

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN

 ECONOMICS AND MATHEMATICS
COURSE CODE: MATH 220

COURSE TITLE: LINEAR ALGEBRA II

STREAM: Y2S2

DAY:
MONDAY
TIME:
9.00-11.00 A.M.

DATE:
23/03/2009

INSTRUCTIONS:

(i) Attempt QUESTION ONE and ANY OTHER TWO questions.
(ii) Show all your working and be neat

PLEASE TURN OVER

QUESTION ONE (30MKS)
(a) If and are any two vectors in an inner product space defined as

$$
<,>=2+\quad+3
$$

Is this an inner product space?
(b) Given a matrix $\mathrm{A}=\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}$, evaluate , where t is an arbitrary parameter.
(c) If $=(2-5,3,2-4)$ and $=(6,1+, 4+2)$ find $2+,-2$ and if $=(4-, 2,3+2)$ then find \| \|
(d) (i) What is a symmetric matrix?
(ii) Given a symmetric matrix $\mathrm{A}=\begin{array}{cc}7 & 3 \\ 3 & -1\end{array}$. Find an orthogonal matrix P which diagonalizes A and hence find
(8mks)
(e) (i) Define a bilinear form on a vector space V
(ii) Show whether if given that is a bilinear form on V then - is also a bilinear form on V , where $-()=,(-)($,$) given that -()=,(,+2$,

QUESTION TWO (20MKS)

(a) Given a matrix $\mathrm{A}=\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3\end{array}$. Express and in terms of , and is the 3×3 identify matrix.
(10mks)
(b) Given a matrix $\mathrm{A}=\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}$. Use Cayley Hamilton's theorem to find the powers of A up to the fifth power. Hence write down the series

QUESTION THREE (20MKS)

$$
\text { Given a } 3 \times 3 \text { matrix } A=\begin{array}{ccc}
2 & -1 & -1 \\
1 & 0 & -1 \\
-1 & 1 & 2
\end{array} .
$$

(a) Find the characteristic polynomial and the eigenvalues of A .
(b) Determine the eigenvectors corresponding to each eigenvectors .
(c) Find the A.M and G.M of each λ.
(d) (i) State Cayley - Hamilton's theorem.
(ii) Is theorem in (d) true for matrix A?
(e) Diagonalize matrix A.

QUESTION FOUR (20MKS)

(a) What is a positive matrix?
(2mks)
(b) Is the given 3×3 matrix $\mathrm{A}=\begin{array}{cccc}-4 & 1+ & 5-2 \\ 1- & 3 & 7 & \text { positive? } \\ 5+2 & -7 & -1\end{array}$
(c) (i) Given that $\mathrm{A}=\begin{array}{ccc}1 & 2 & -3 \\ 2 & 5 & -4 \\ -3 & -4 & 8\end{array}$ is a real symmetric matrix. Find a non- singular matrix P such that AP is diagonal.
(ii) Hence, or otherwise find the signature of A .
(2mks)
(d) Let f be any symmetric bilinear form on $\mathrm{V}(\mathrm{F})$ and let q be the corresponding quadratic form associated with f. Derive the polarization identity.
$(1+1) f()=,(+)-()-()$, with $1+1 \neq 0$
(4mks)

QUESTION FIVE (20MKS)

(a) If and are orthogonal vectors in an inner product space, then state and prove the generalized Pythagoras theorem.
(b) Let have an Eudidean inner product. Use Gram-Schmidt process to transform the following basis into an orthonormal basis,

$$
\begin{equation*}
=\{=(0,2,1,0),=(1,-1,0,0)==(1,2,0,-1), \quad=(1,0,0,1)\} \tag{16mks}
\end{equation*}
$$

