SUPPLEMENTARY/SPECIAL EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE
COURSE CODE: MATH 220
COURSE TITLE: LINEAR ALGEBRA II
STREAM: SESSION II
DAY: WEDNESDAY
TIME: 2.00 - 4.00 P.M.
DATE: 18/03/2009
INSTRUCTIONS:

1. Answer Question ONE and any other TWO Questions
2. Show ALL your workings.

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Define the terms eigenvector and eigenvalue of a matrix A
(b) Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{cc}
3 & 2 \\
3 & -2
\end{array}\right]
$$

(c) Show that the matrix
$\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2\end{array}\right]$
Is nondiagonalizable
(d) Show that the matrix
$A=\left[\begin{array}{ll}2 & 5 \\ 3 & 4\end{array}\right]$
Satisfies its characteristics equation
(e) If V is an inner product space ad \boldsymbol{x} and \boldsymbol{y} are vectors in V , prove that

$$
\begin{equation*}
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2} \quad \text { iff }(\mathrm{x}, \mathrm{y})=0 \tag{4mks}
\end{equation*}
$$

(f) Prove that an orthogonal set of nonzero vectors in inner product space is linearly independent

QUESTION TWO (20 MARKS)

(a) Let A be an nxn orthogonal matrix and let \boldsymbol{x} and \boldsymbol{y} be nonzero vectors in R^{n}. Prove that
(i) $|x|=|A x|$ (3 mks)
(ii) The angle between $\boldsymbol{A x}$ and $\boldsymbol{A y}$ is equal to the angle between x and y .
(b) Consider the matrix

$$
A=\left[\begin{array}{ccc}
\frac{2}{3} & \frac{2}{3} & \frac{-1}{3} \\
\frac{2}{3} & \frac{-1}{3} & \frac{2}{3} \\
\frac{-1}{3} & \frac{2}{3} & \frac{2}{3}
\end{array}\right]
$$

(i) Show that A is an orthogonal matrix
(ii) Let f be the linear transformation from R^{3} given by $\mathrm{f}(x)=\mathrm{A} x$. Write down the images under f of the standard basis vectors.
(iii) Evaluate $\mathrm{A} x$ and $\mathrm{A} y$ where
$x=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \quad$ and $\quad y=\left[\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right]$
and verify that

$$
\begin{equation*}
|x|=|A x| \text { and }|y|=|A y| \tag{6mks}
\end{equation*}
$$

QUESTION THREE (20 MKS)

(a) Find an orthonormal basis for
$\mathrm{W}=\left\{(x, y, z) \mid x+y+z=0\right.$ in $\left.R^{3}\right\}$
With respect to the dot product.
(10 mks)
(b) Find the matrix of the orthogonal projection onto the subspace of R^{4} spanned by

$$
\mathrm{V}_{1}=\frac{1}{2}\left[\begin{array}{l}
1 \tag{4mks}\\
1 \\
1 \\
1
\end{array}\right], \quad \mathrm{V}_{2}=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

(c) Show that the set
$\mathrm{V}=\left\{(0,1,0),\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}}\right)\right\}$
Is orthonormal
(6 mks)

QUESTION FOUR (20 MKS)

(a) Find a diagonal matrix D similar to the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{14mks}\\
-8 & 4 & -6 \\
8 & 1 & 9
\end{array}\right]
$$

(b) (i) For the matrix A above (i) find A^{n} if n is a positive integer
(2 mks)
(ii) Find A^{3}
(2 mks)
(iii) Find $\mathrm{A}^{1 / 2}$
(2 mks)

QUESTION FIVE (20 MARKS)

Consider the matrix

$$
A=\left[\begin{array}{ccc}
3 & 3 & 2 \\
2 & 4 & 2 \\
-1 & -3 & 0
\end{array}\right]
$$

(i) Find the eigenvalues of $\mathrm{A} \quad$ (5 mks)
(ii) Find the algebraic and geometric multiplicities of each eigenvalue (9 mks)
(iii) Find a basis for each eigenspace.

