COURSE CODE: MATH 220

COURSE TITLE: LINEAR ALGEBRA II

STREAM
 Y2S2

DAY:
WEDNESDAY
TIME:
9.00-11.00 A.M.

DATE:
16/03/2011

INSTRUCTIONS:

1. Answer question ONE and any other TWO questions
2. Begin each question on a separate page
3. Show your workings clearly

QUESTION ONE (30 MARKS)

a) Determine if the following sets of vectors are linearly independent or linearly dependent.
i) $\quad P_{1}=1, p_{2}=x$ and $p_{3}=x^{2}$ in p^{2}
(3 marks)
ii) $\quad P_{1}=x-3, p_{2}=x^{2}+2 x$ and $p_{3}=x^{2}+1$ in p_{2}
iii)

$$
\begin{equation*}
\mathrm{P}_{1}=2 \mathrm{x}^{2}-\mathrm{x}+7, \mathrm{p}_{2}=\mathrm{x}^{2}+4 \mathrm{x}+2 \text { and } \mathrm{p}_{3}=\mathrm{x}^{2}-2 \mathrm{x}+4 \text { in } \mathrm{p}_{2} \tag{4marks}
\end{equation*}
$$

b) Determine if each of the sets of vectors will be a basis for \mathfrak{R}^{3}.
(i) $\left.\mathrm{v}_{1} \square \tilde{1}, 1,1\right), \mathrm{v}_{2} \square 0,1,2$) and $\left.\mathrm{v}_{3} \square 3, \tilde{0}, 1\right)$
(ii) $\left.\left.\mathrm{v}_{1} \square 1,0,0\right), \mathrm{v}_{2} \square 0,1,0\right)$ and $\left.\mathrm{v}_{3} \square 0,0,1\right)$
(iii) $\mathrm{v}_{1} \square 1,1,0$) and $\left.\mathrm{v}_{2} \llbracket 1,0,0\right)$
(iv) $\left.\mathrm{v}_{1} \llbracket \tilde{1}, 1,1\right), \mathrm{v}_{2} \tilde{\square} 1, \tilde{2,2}$) and $\left.\mathrm{v}_{3} \tilde{\square} 1, \tilde{4}, 4\right)$

QUESTION TWO (20) MARKS)

a) Determine if the given set is a subspace of the given vector space.
(i) Let W be the set of all points, x, y, from \mathfrak{R}^{2} in which $x \square 0$. Is this a subspace of \mathfrak{R}^{2} ?
(2 marks)
(ii) Let W be the set of all points from \mathfrak{R}^{3} of the form $\left(0, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$. Is this a subspace of \mathfrak{R}^{3} ?
(3 marks)
(iii) Let W be the set of all points from \mathfrak{R}^{3} of the form $\left(1, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$. Is this a subspace of \mathfrak{R}^{3} ?
(3 marks)
b) Determine if the following sets of vectors will span \mathfrak{R}^{3}
(i) $\left.\mathrm{v}_{1} \square 2,0,1\right), \mathrm{v}_{2} \square 1,3,4$), and $\left.\mathrm{v}_{3} \square 1, \tilde{1}, 2\right)$
(ii) $\left.\left.\mathrm{v}_{1} \square 1,2,1\right), \mathrm{v}_{2} \square \tilde{3}, 1,1\right)$, and $\left.\mathrm{v}_{3} \tilde{\square} 3, \tilde{8}, 5\right)$

QUESTION THREE (20 MARKS)

a) Reduce each of the following sets of vectors to obtain a basis for the given vector spaces
i) $\quad \mathrm{v}_{1}=(1,0,0), \mathrm{v}_{2}=(0,1,-1), \mathrm{v}_{3}=(0,4,-3)$ and $\mathrm{v}_{4}=(0,2,0)$ for \mathfrak{R}^{3}
ii) $\quad \mathrm{p}_{0}=2, \mathrm{p} 1=-4 \mathrm{x}, \mathrm{p}_{2}=\mathrm{x}^{2}+\mathrm{x}+1, \mathrm{p}_{3}=2 \mathrm{x}+7$ and $\mathrm{p}_{4}=5 \mathrm{x}^{2}-1$ for p_{2}
b) For each of the following compute $\langle u, v\rangle,\|u\|$ and $d \mathbf{u} \mathbf{u}, \mathbf{y}$ for the given pair of vectors and inner product.
(i) $\mathbf{u} \square \tilde{2,1}, 4$ and $\mathbf{v} \square 3,2,0$ in \Re^{3} with the standard Euclidean inner product.
(ii) $\mathbf{u} \llbracket 2,1,4$ and $\mathbf{v} \square 3,2,0$ in \mathfrak{R}^{3} with the weighed Euclidean inner product using the weights $w_{1} \square 2, w_{2} \square 6$ and $w_{3}=1 / 5$.
(4 marks)
(iii) u $\square x$ and $\mathbf{v} \square x^{2}$ in $C \quad 0,1 \square$ using the inner product for continous functions. (4 marks)

QUESTION FOUR (20 MARKS)

a) Given that $\left.\left.v_{1} \square 2,1,0\right), v_{2} \square 1, \tilde{0}, 1\right)$, and $\left.v_{3} \square 3, \tilde{7}, 1\right)$ is a basis of \mathfrak{R}^{3} and assuming that we're working with the standard Euclidean inner product construct an orthogonal basis for \mathfrak{R}^{3}.
(11 marks)
b) Determine if the given set is a subspace of the given vector space.
(i) Let W be the set of diagonal matrices of size $n \quad n$. Is this a subspace of M_{22} ?
(3 marks)
(ii) Let W be the set of matrices of the form $\left[\begin{array}{ll}0 & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$.Is this a subspace of M_{32} ? (3 marks)
(iii) Let W be the set of matrices of the form $\left[\begin{array}{ll}2 & a_{12} \\ 0 & a_{22}\end{array}\right]$.Is this a subspace of M_{22} ? (3 marks)

QUESTION FIVE (20 MARKS)

Find all the Eigen values and Eigen vectors for the given matrices
$\begin{array}{ll}\text { i) } & \mathrm{A}=\left[\begin{array}{lll}4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0\end{array}\right] \\ \text { ii) } & \mathrm{A}=\left[\begin{array}{lll}6 & 3 & -8 \\ 0 & -2 & 0 \\ 1 & 0 & -3\end{array}\right]\end{array}$
(10 marks)

