KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2010/2011 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 220

COURSE TITLE: LINEAR ALGEBRA II

- STREAM: Y2S2
- DAY: WEDNESDAY
- TIME: 9.00 11.00 A.M.
- DATE: 16/03/2011

INSTRUCTIONS:

- 1. Answer question **ONE** and any other **TWO** questions
- 2. Begin each question on a separate page
- 3. Show your workings clearly

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

a)	Determine if the following sets of vectors are linearly independent or linearly dependent		
	i)	$P_1 = 1, p_2 = x \text{ and } p_3 = x^2 \text{ in } p^2$	(3 marks)
	ii)	$P_1=x-3$, $p_2=x^2+2x$ and $p_3=x^2+1$ in p_2	(4 marks)
	iii)	$P_1=2x^2-x+7$, $p_2=x^2+4x+2$ and $p_3=x^2-2x+4$ in p_2	(4 marks)
b)	ine if each of the sets of vectors will be a basis for \Re^3 .		
	(i) v ₁	\square $\tilde{1}, 1, 1)$, $v_2 \square 0, 1, 2)$ and $v_3 \square 3, \tilde{0}, 1)$	(5 marks)
•	(ii) v	$_{1} \square 1,0,0)$, $v_{2} \square 0,1,0)$ and $v_{3} \square 0,0,1)$	(5 marks)
•	(iii) v	$v_1 \square 1,1,0$) and $v_2 \square 1,0,0$)	(4 marks)

(iv)
$$v_1 \square \tilde{1}, 1, 1$$
), $v_2 \square \tilde{1}, \tilde{2}, 2$) and $v_3 \square \tilde{1}, \tilde{4}, 4$) (5 marks)

QUESTION TWO (20) MARKS)

a) Determine if the given set is a subspace of the given vector space.

(i) Let W be the set of all points, x, y, from ℜ² in which x □0. Is this a subspace of ℜ²? (2 marks)
(ii) Let W be the set of all points from ℜ³ of the form (0, x₂, x₃). Is this a subspace of ℜ³? (3 marks)

(iii) Let *W* be the set of all points from \Re^3 of the form (1, x_2 , x_3). Is this a subspace of \Re^3 ? (3 marks)

- b) Determine if the following sets of vectors will span \Re^3
 - (i) $v_1 \Box 2,0,1$), $v_2 \Box 1,3,4$), and $v_3 \Box 1,1,2$) (6 marks)
 - (ii) $v_1 \square 1, \tilde{2}, 1$), $v_2 \square \tilde{3}, 1, 1$), and $v_3 \square \tilde{3}, \tilde{8}, 5$) (6 marks)

QUESTION THREE (20 MARKS)

a) Reduce each of the following sets of vectors to obtain a basis for the given vector spaces

i)
$$v_1 = (1,0,0)$$
, $v_2 = (0,1,-1)$, $v_3 = (0,4,-3)$ and $v_4 = (0,2,0)$ for \Re^3 (4 marks)

ii)
$$p_0=2$$
, $p_1=-4x$, $p_2=x^2+x+1$, $p_3=2x+7$ and $p_4=5x^2-1$ for p_2 (4 marks)

b) For each of the following compute $\langle u, v \rangle$, $ u $ and d u , y for the given pair of	
vectors and inner product.	
(i) $u \ \[-2,1], 4$ and $v \[-3,2], 0$ in \Re^3 with the standard Euclidean inner product.	(4 marks)
(ii) u $\square 2, 1, 4$ and v $\square 3, 2, 0$ in \Re^3 with the weighed Euclidean inner product using the weights $w_1 \square 2$, $w_2 \square 6$ and $w_3 = 1/5$.	(4 marks)
(iii) u $\Box x$ and v $\Box x^2$ in C 0,1 \Box using the inner product for continous functions.	(4 marks)

QUESTION FOUR (20 MARKS)

- a) Given that v₁ □2,1,0), v₂ □1,0,1), and v₃□3,7,1) is a basis of ℜ³ and assuming that we're working with the standard Euclidean inner product construct an orthogonal basis for ℜ³.
 (11 marks)
- b) Determine if the given set is a subspace of the given vector space.
- (i) Let W be the set of diagonal matrices of size $n \, n$. Is this a subspace of M_{22} ? (3 marks)

(ii) Let *W* be the set of matrices of the form
$$\begin{bmatrix} 0 & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$
. Is this a subspace of M_{32} ? (3 marks)

(iii) Let *W* be the set of matrices of the form
$$\begin{bmatrix} 2 & a_{12} \\ 0 & a_{22} \end{bmatrix}$$
. Is this a subspace of M_{22} ? (3 marks)

QUESTION FIVE (20 MARKS)

Find all the Eigen values and Eigen vectors for the given matrices

i)
$$A = \begin{bmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{bmatrix}$$
 (10 marks)
ii) $A = \begin{bmatrix} 6 & 3 & -8 \\ 0 & -2 & 0 \\ 1 & 0 & -3 \end{bmatrix}$ (10 marks)