UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE
COURSE CODE: MATH 220
COURSE TITLE: LINEAR ALGEBRA II
STREAM: SESSION IV
DAY: WEDNESDAY
TIME: 9.00 - 11.00 A.M.
DATE: 26/11/2008
INSTRUCTIONS TO CANDIDATES:

1. Answer Question ONE and any other TWO Questions

QUESTION ONE (30 MARKS)

(a) If V is an inner product space and x and y are vectors in V , prove that

$$
\begin{equation*}
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}, \operatorname{iff}(x, y)=0 \tag{3mks}
\end{equation*}
$$

(b) (i) Define the terms eigenvalue and eigenvector in relation to a matrix A .
(ii) Determine the eigenvalues of the matrix

$$
A=\left[\begin{array}{ll}
2 & 5 \\
3 & 4
\end{array}\right]
$$

(c) Determine the determinant of the matrix

$$
A=\left[\begin{array}{cccc}
2 & 3 & 4 & 6 \\
2 & 0 & -9 & 6 \\
4 & 1 & 0 & 2 \\
0 & 1 & -1 & 0
\end{array}\right]
$$

by cofactor method
(d) Show that the set

$$
\mathrm{V}=\left\{(0,1,0)\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}}\right)\right\} \text { is orthonormal. }
$$

(e) Diagonalize the matrix $\left[\begin{array}{cc}p & -q \\ q & p\end{array}\right]$ where p and q are real numbers and $\mathrm{q} \neq 0$.

QUESTION TWO (20 MARKS)

Consider the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 1 & 3 \\ 0 & 2 & 1 \\ 4 & -4 & -1\end{array}\right]$
(a) Find the eigenvalues of A .
(b) Find the algebraic and geometric multiplicities of each eigenvalue.
(c) Find a basis for each eigenspace

QUESTION THREE (20 MKS)

(a) (i) Show that the determinant of a diagonal matrix is the product of its main diagonal entries.
(ii) Show that the eigenvalues of an upper or lower triangular matrix are the entries on the main diagonal.
(b) Diagonalize the real symmetric matrix

$$
\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 5 & 0 \\
0 & 0 & 3
\end{array}\right] \text { through orthogonal reduction. }
$$

QUESTION FOUR (20 MKS)

(a) (i) State the Cayley - Hamilton theorem.
(2 mks)
(ii) Verify the Cayley - Hamilton theorem for the matrix

$$
A=\left[\begin{array}{ccc}
2 & 0 & -1 \\
0 & 2 & 0 \\
-1 & 0 & 2
\end{array}\right] \text { and hence determine } A^{-1} \text { and } A^{4}
$$

(8 mks)
(b) Find an orthonormal basis for $\mathrm{W}=\left\{(x, y, z): x+y+z=0\right.$, in $\left.\mathfrak{R}^{3}\right\}$ with respect to the dot product.
(10 mks)

QUESTION FIVE (20 MARKS)

(a) (i) If V is an inner product space and x and y are vectors in V , prove that

$$
\begin{equation*}
\|x+y\| \leq\|x\|+\|y\| \tag{4mks}
\end{equation*}
$$

(ii) Apply the Gram- Schruidt process to $\mathrm{V}=\left\{V_{1},=(0,-1,1), V_{2}=(-1,0,1)\right\}$
(9 mks)
(b) Let A be an n x n orthogonal matrix and let x and y be non- Zero vectors in \mathfrak{R}. Show that;
(i) $|x|=|A x|$
(3 mks)
(ii) The angle between $A x$ and $A y$ is equal to the angle between x and y.
(4 mks)

