KABARAK



UNIVERSITY

# UNIVERSITY EXAMINATIONS 2010/2011 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

COURSE CODE: MATH 220

**COURSE TITLE: LINEAR ALGEBRA II** 

- STREAM: SESSION IV
- DAY: FRIDAY
- TIME: 2.00 4.00 P.M.
- DATE: 26/11/2010

## **INSTRUCTIONS:**

> Attempt question **ONE** and any other **TWO** Questions

PLEASE TURNOVER

#### **QUESTION ONE (30 MARKS)**

- a) Let  $V = \{v_1, v_2, v_3, ..., v_n\}$  be a vector in  $\mathbb{R}^n$ . Explain clearly what is meant by saying V is linearly independent.
- b) Let V be a vector space in  $R^3$  and let  $v_1 = (1, 2, 1)$ ,  $v_2 = (1, 0, 2)$  and  $v_3 = (1, 1, 0)$ . Does  $v_1, v_2$ , and  $v_3$  span V?
- c) Show that the following matrix is diagonalizable and find a diagonal matrix

similar to the given matrix  $\begin{pmatrix} 2 & 0 & 0 \\ 1 & -1 & -2 \\ -1 & 0 & 1 \end{pmatrix}$ 

d) Compute the eigenvalues and hence the eigenvectors of the matrix  $\begin{pmatrix} 2 & 0 & 0 \\ 3 & -1 & 0 \\ 0 & 4 & 3 \end{pmatrix}$ .

e) Let  $T: \mathbb{R}^2 \to \mathbb{R}^3$  be a linear transformation such that  $T(1) = 1, \ T(x) = x^2$  and  $T(x^2) = x^3 + x$ , determine;  $T(2x^2 - 5x + 3)$  $T(ax^2 + bx + c)$ 

f) On 
$$[a,b]$$
 for  $b > a$ , define  $\langle f,g \rangle = \int_{a}^{b} f(x)g(x)dx$ . Verify that  $\langle f,g \rangle = \int_{a}^{b} f(x)g(x)dx$  is an inner product.

#### **QUESTION TWO (20 MARKS)**

- a) Solve the following system of equations using row reduction method x+3y+6z = 25 2x+7y+14z = 582y+5z = 19
- b) Let V be an inner product space and let x and y be vectors in V. Prove that  $||(x, y)|| \le ||x|| ||y||$

c) Show that  $\begin{pmatrix} 2 & 5 \\ 5 & 2 \end{pmatrix}$  and  $\begin{pmatrix} 0 & -3 \\ 3 & 0 \end{pmatrix}$  are orthogonal with respect to the inner product

defined by  $\langle A, B \rangle = a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22}$  for  $A, B \in M_{2x2}$ OUESTION THREE (20 MARKS)

a) Show that  $B = \{(\frac{2}{3}, \frac{1}{2}, \frac{2}{3}), (\frac{-2}{3}, \frac{2}{3}, \frac{1}{3})\}$  is an orthogonal basis for the inner product space  $W = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - 2z = 0\}$  with respect to the dot product.

- b) Find the orthogonal basis for the space  $\{(3t, -4t, 12t): T \in R\}$  or  $R^3$  with respect to the dot product.
- c) Find the norm of  $\begin{pmatrix} -4 & 0 \\ 1 & 8 \end{pmatrix}$ , in the inner product defined by

$$\langle A, B \rangle = a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22}.$$

d) Verify the Cauchy-Schwartz inequality for the vectors  $x_1 = (-4, 3, 0, 12)$  and  $x_2 = (-2, 0, 1, 2)$  in  $R^4$  with respect to the dot product.

### **QUESTION FOUR (20 MARKS)**

- a) What condition must real symmetric matrix have for it to be diagonalizable?
- b) Which of the following matrices are diagonalizable?

i). 
$$\begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$$
 ii).  $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ , iii).  $\begin{pmatrix} 3 & 4 \\ -1 & 2 \end{pmatrix}$   
c) Find an invertible matrix P for the following matrix  $A = \begin{pmatrix} 2 & 2 & -2 \\ 1 & 3 & -1 \\ -1 & 1 & 1 \end{pmatrix}$ 

### **QUESTION FIVE (20 MARKS)**

- a) Show that the function T with domain in the set of 2x1 vectors and defined by  $T\left[\begin{pmatrix}x\\y\end{pmatrix}\right] = x$  is linear.
- b) Solve the following system of equations using row reduction method.

$$x_{1} + 2x_{2} - 3x_{3} = 0$$
  

$$2x_{1} - 2x_{2} - x_{3} = -1$$
  

$$-3x_{1} + 5x_{2} + x_{3} = 3$$

- c) Find the *Ker T* for the following linear transformation:  $T : \mathbb{R}^3 \to \mathbb{R}^3$  defined by  $T(x, y, z) =: \{(x + y + z), (3x y z), (5x + y 3z)\}.$
- d) Consider the set defined by  $V = \{x, y, z : ax + by + cz = 0, a, b, c \in R\}$ , check if *V* is a vector space.

#### **QUESTION SIX (20 MARKS)**

1. Let  $\dim_R V = 2$  and define T on V by

$$v_1 T = av_1 + bv_2$$
$$v_2 T = xv_1 + yv_2$$

where  $a, b, x, y \in R$ . In terms of a, b, x, y, find necessary and sufficient conditions that T have two distinct eigenvalues in R.

2. Let V be a vector space over the field F and let D be the operator in V which computes the derivative of the polynomial in x defined by

 $(a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4)D = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3$ . Consider the basis  $\{v_1 = 1, v_2 = 1 + x, v_3 = 1 + x^2, v_4 = 1 + x^3\}$ . Find the matrix m(D) of D in this basis.

3 Let matrix 
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 1 & -1 & 2 \\ 2 & 4 & -1 \end{pmatrix}$$
 and  $B = \begin{pmatrix} -7 & 6 & 5 \\ 5 & -8 & -5 \\ 6 & -8 & -5 \end{pmatrix}$ .

Find AB hence or otherwise solve the system of equations

3x + 2y + z = 9x - 2y + 3y = 62x + 4y - z = 5

4.  $V = \{v_1, v_2, v_3, ..., v_n\} \in \mathbb{R}^n$ , check whether V is linearly independent.

5. Let  $A = \begin{pmatrix} 3 & -2 \\ 4 & -5 \end{pmatrix}$  be a matrix of transformation in the basis  $v_1 = (1,0)$   $v_2 = (0,1)$ . Find the matrix of m(T) of T in the basis  $u_1 = (1,2)$   $u_2 = (2,5)$ 

6. Let  $F: \mathbb{R}^2 \to \mathbb{R}^2$  be defined by F(x, y) = (2x+3y, 4x-5y)Find the T of F relative to the basis  $S = (u_1, u_2) = \{(1, -2), (2, -5)\}$ 

7. Let V be the vector space of polynomials of degree 3 or less over the reals. Define T from V by  $(a_0 + a_1v_1 + a_2v_2 + a_3v_3)T = a_0 + a_1(1+x) + a_2(1+x)^2 + a_3(1+x)^3$ . Show that T is a linear transformation in V and find the matrix representation in the following basis, 1, 1+x,  $1+x^2$ ,  $1+x^3$ .