 SCIENCE

COURSE CODE: MATH 220

COURSE TITLE: LINEAR ALGEBRA II
STREAM: SESSION II

DAY:
THURSDAY
TIME:
9.00-11.00 A.M.

DATE:
14/04/2011

INSTRUCTIONS:

Answer question ONE and any other TWO questions

QUESTION ONE (3OMARKS) COMPULSORY

(a) Let $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ be defined by $\mathrm{T}(\mathrm{x}, \mathrm{y})=(\mathrm{x}+\mathrm{y}, \mathrm{x})$ show that T is linear
(b) Given that $\quad=\left(\begin{array}{ccc}1 & -1 & 2 \\ 3 & -3 & 6 \\ -2 & 2 & -4\end{array}\right)$

Determine

(i) the rank of A
(ii) the null space of A
(c) Show that the following defines an inner product inR ${ }^{2}$
$\langle u, v\rangle=x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+3 x_{2} y_{2}$ where $u\left(x_{1} x_{2}\right)$ and $v\left(y_{1} y_{2}\right) \quad$ (3 mks)
(e) show that the vectors $(1,1,8,1),(1,0,3,0)$ and $(3,1,14,1)$ and linearly dependent (3mks)
(f) Solve the following system of equation using row reduction method

$$
\begin{align*}
& 4 x_{1}-2 x_{2}+3 x_{3}=4 \\
& 5 x_{1}-x_{2}+4 x_{3}=7 \\
& 3 x_{1}+5 x_{2}+x_{3}=7 \tag{7mks}
\end{align*}
$$

(g) Determine the eigenvalues and its corresponding eigenvector of

$$
\left(\begin{array}{lll}
1 & 1 & 0 \tag{6mks}\\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

(h) Let $\quad=\left(\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right)$ Show that A is diagonalizable and find a similar matrix to A (3mks)

QUESTION TWO (20MKS)

(a) (i) let $\mathrm{V}=\left(\mathrm{V}_{1} \mathrm{~V}_{2} \ldots \ldots \ldots \ldots \mathrm{~V}_{\mathrm{n}}\right)$ be vectors in R^{n}. Explain clearly what the term linearly dependent means in reference to the vectors in $\mathrm{R}^{\mathrm{n}} \quad(2 \mathrm{mks})$
(ii) Show that the set $\mathrm{V}=\{(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mid 2 \mathrm{x}-\mathrm{y}-\mathrm{z}=0\}$ and $\mathrm{K}=\{(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mid \mathrm{x}+2 \mathrm{y}$ $+3 z=0\}$ be subspace of R^{3} find $\mathrm{H} \cap \mathrm{K}$ and determine whether it is a subspaceof R^{3}

QUESTION THREE (20 MKS)

Let $\mathrm{U}=(1,3,-4,2), \mathrm{V}=(4,-2,2,1)$ and $\mathrm{W}=(5,-1,-2,6)$ in R^{4}
(a) Show that $\langle 3 \mathrm{U}-2 \mathrm{~V}, \mathrm{~W}\rangle=3<\mathrm{U}, \mathrm{W}\rangle-2\langle\mathrm{~V}, \mathrm{~W}\rangle$
(b) Let $f(t)=3 t-5$ and $g(t)=t^{2}$ be the polynomial space $\mathrm{p}(\mathrm{t})$ with inner product

$$
\langle f, g\rangle=\int \quad() \quad()
$$

Determine
(a) <f, g>
(4mks)
(b) (i) $\|f\|$
(ii) || $g \|$
(3mks)
(b) Let $\mathrm{c}[\mathrm{a} ; \mathrm{b}]$ denotes the vector space of all continuous functions on the closed interval [a:b]. Let also $f(t)$ and $g(t)$ be functions in $c[a: b]$. Verify that $\int()()$ is an inner product.

QUESTION FOUR

(a) Let $\mathrm{V}_{1}=(1,2,3), \mathrm{V}_{2}=(-1,2,1)$ and $\mathrm{V}_{3}=(2,7,2)$.Show that $(-3,1,-2)$ is in the space span by $\left(\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3}\right)$.
(b) Let $\left.\quad \begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$

Determine
(i) The null space of A
(4mks)
(ii) The general solution to the equation $\mathrm{AX}=\begin{gathered}6 \\ 15\end{gathered}$ in terms of a particular solution and an arbitrary member of the null space of A (5mks)
(c) Determine the basis for the null space of $\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1\end{array}$

QUESTION FIVE (20MKS)

(a) Show that the mapping $T: R^{2} \rightarrow R^{3}$ given by $T(X, y)=(X+1,2 Y, X+Y)$ is not linear.
(b) Determine the value of K so that

$$
\begin{aligned}
& X+2 y-3 z=4 \\
& 3 x-y+5 z=2 \\
& 4 x+y+\left(k^{2}-14\right) z=k+2
\end{aligned}
$$

Has
(i) No solution
(3mks)
(ii) Unique solution
(3mks)
(iii) Many solution
(3mks)
(c) Determine the value of K such that $\mathrm{V}=(1,2, \mathrm{k}, 3)$ and $\mathrm{V}=(3, \mathrm{k}, 7,-5)$ in R^{4} are orthogonal.

$$
\text { (d) Give } A=\left(\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

Determine the matrix B which is similar to the matrix A.

