

UNIVERSITY EXAMINATIONS 2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 211

COURSE TITLE: LINEAR ALGEBRA I
STREAM: \quad SESSION III \& IV \& V
DAY:
TUESDAY

TIME:
9.00-11.00 A.M.

DATE:
12/04/2011

INSTRUCTIONS:

1. Answer question ONE and any other TWO questions
2. Begin each question on a separate page
3. Show your workings clearly

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

a) Find the determinant of $A=\left(\begin{array}{lll}2 & -1 & 1 \\ -1 & 0 & 3 \\ 2 & 1 & -4\end{array}\right)$
b) Compute the inverse of the following matrices using row reduction method
i) $\left(\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right)$ (3 marks)
ii) $\left(\begin{array}{ll}2 & -3 \\ 4 & 4\end{array}\right)$
c) Given $\mathbf{v}=(3,-1,-2)$ find the a unit vector that,
i) Points in the same direction as v
ii) Points in the opposite direction as v
d) Find the angle between the vectors $p=2 i+3 j+4 k$ and $q=4 i-3 j+2 k$
e) Determine if the following sets of vectors will span R^{3}
i) $\quad V_{1}=(2,0,1), v_{2}=(-1,3,4)$ and $v_{3}=(1,1,-2)$
ii) $\quad \mathrm{V} 2=(1,2,-1), \mathrm{v} 2=(3,-1,1)$ and $\mathrm{v} 3=(-3,8,-5)$

QUESTION TWO (20MARKS)

a) Given $u=(3,-1,4)$ and $v=(2,0,1)$ compute each of the following
i) uxvandvxu (6 marks)
ii) $u x u$
(2 marks)
iii) u.(uxv) and v.(uxv)
(4 marks)
iv) Angle between u and v
(4 marks)
b) Find the rank of the following matrix

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
2 & 1 & 0
\end{array}\right)
$$

(4 marks)

QUESTIONTHRE(20MARKS)

a) Given $u=(-2,3,1,-1)$ and $v=(7,1,-4,-2)$ verify the cauchy-schwarz inequality and the triangular inequality
b) Determine if the following sets of vectors are linearly independent or linearly dependent
i) $\mathrm{V}_{1}=(1,1,-1,2), \mathrm{v}_{2}=(2,-2,0,2)$ and $\mathrm{v}_{3}=(2,-8,3,-1)$
ii) $\mathrm{v}_{1}{ }^{\circ}=(1,-2,3,-4), v_{2}=(-1,3,4,2)$ and $v_{3}=(1,1,-2,-2)$
c) Show that $\left(A^{n}\right)\left(A^{-1}\right)=1$

QUESTION FOUR (20MARKS)

a) Suppose that $\mathbf{u}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$ and $\mathbf{v}=\left(\mathrm{v}_{1}, v_{2}, v_{3}\right)$ are two vectors in 3 - space then, Show that $u . v=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$
b) Solve the following systems of equations using cramers rule
$4 x+2 y+4 z=16$
$2 x-6 y+6 z=-8$
(7 marks)
$8 x+4 y-2 z=2$
c) Evaluate each of the following if $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
i) $\quad A^{2}$ (3 marks)
ii) A^{3}
(3 marks)

QUESTION RVE (20MARKS)

a) For the following matrices compute

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & -2 & 3 \\
2 & 7 & 4 \\
3 & 1 & 4
\end{array}\right] \\
& B=\left[\begin{array}{lll}
1 & 0 & 5 \\
7 & -3 & 4 \\
2 & -1 & -4
\end{array}\right]
\end{aligned}
$$

i)	$\operatorname{Det}(A)$	(3 marks)
ii)	$\operatorname{Det}(B)$	$(3$ marks)
iii)	$\operatorname{Det}(A B)$	$(3$ marks $)$
iv)	$\operatorname{Det} A^{-1}$	$(2$ marks)

b) Show that $u=(3,0,1,0,4,-1)$ and $v=(-2,5,0,2,-3,-18)$ are orthogonal and verify that the pythagorean Theorem holds (8 marks)

