



**UNIVERSITY** 

## UNIVERSITY EXAMINATIONS

## 2010/2011 ACADEMIC YEAR

# FOR THE BACHELOR OF THEOLOGY DEGREE

## MATHEMATICS

## **COURSE CODE: MATH 001**

# **COURSE TITLE: INTRODUCTORY MATHEMATICS**

- STREAM: Y2 S2
- DAY: WEDNESDAY
- TIME: 2.00 4.00 P.M.
- DATE: 08/12/2009

### **INSTRUCTIONS:**

Attempt questions **ONE** and any other **TWO** questions

### PLEASE TURN OVER

### **QUESTION ONE (30 MARKS)**

| a)   | Starting with a general format of a quadratic equation                                |                  |
|------|---------------------------------------------------------------------------------------|------------------|
| ,    | $ax^2 + bx + c = 0$ . Deduce the quadratic formula and hence solve $2x^2 + c^2 = 0$ . | 5x = -3          |
|      | -                                                                                     | (8 marks)        |
| b)   | Given the coordinates (2, 4) and (4, 8) deduce the equation of the line.              | (3 marks)        |
| c)   | Consider the sequence $\{Xn\} = 2, 5, 8, 11, \dots, \dots, \dots, \dots$ find         |                  |
|      | (i) The number of terms in a sequence given the nth term is 92                        | (3 marks)        |
|      | (ii) The sum of the first 20 terms                                                    | (3 marks)        |
| d)   | Consider the following systems of equations                                           |                  |
|      | 2y + x = 4                                                                            |                  |
|      | 5y + 3x = 11                                                                          |                  |
|      | Solve the simultaneous equations                                                      | (4 marks)        |
| e)   | Find the number of ways in which letters of the word TERRITORY can be                 | e arranged       |
|      |                                                                                       | (3 marks)        |
| f)   | Solve the following equations                                                         |                  |
|      | (i) $2x + \frac{1}{x} = 3$                                                            | (3 marks)        |
|      | (ii) $27^{\left(\frac{3}{4}-x\right)} = 81^{\left(x-\frac{1}{4}\right)}$              | (4 marks)        |
| QUES | TION TWO (20 MARKS)                                                                   |                  |
| a)   | Deduce the formula of the sum of G. P. and hence find the sum of the fi               | rst 5 terms in a |
|      | sequence{ $Xn$ } = {64, 32, 16, 8}                                                    | (10 marks)       |
| b)   | Find the approximate value of a G. P                                                  |                  |
|      | $\{Xn\} = 0.45$ in fraction form.                                                     | (5 marks)        |
| c)   | Solve the following equations                                                         |                  |
|      | (i) $2x^2 + 4x + 4 = 0$                                                               | (2 marks)        |

(ii)  $x^2 + 6x = 15$  (3 marks)

### **QUESTION THREE (20 MARKS)**

| a) | Solve for x                          |           |
|----|--------------------------------------|-----------|
|    | (i) $5^{x+2} = 5^{3x-6}$             | (2 marks) |
|    | (ii) $3^{2x-6} = 1$                  | (2 marks) |
|    | $(iii)4^x - 2^{x+1} = 8$             | (2 marks) |
|    | $(iv)\log(x+3) + \log(x+2) = \log 6$ | (3 marks) |
| b) | Evaluate $5_{P_3} - 5_{C_3}$         | (2 marks) |
|    |                                      |           |

c) Use Binomial to expand  $(1 - 2x)^6$  up to the term involving  $x^3$ 

d) In how many ways can a committee of four be formed from five boys and six girls if the committee must have at least one girl. (4 marks)

#### **QUESTION FOUR (20 MARKS)**

| a) | Define the terms                                                             |                |
|----|------------------------------------------------------------------------------|----------------|
|    | (i) Permutation                                                              | (2 marks)      |
|    | (ii) Combination                                                             | (2 marks)      |
| b) | Given the word LOGARITHMS                                                    |                |
|    | (i) In how many ways can the word be written without repetition?             | (2 marks)      |
|    | (ii) If the repetition is allowed                                            | (2 marks)      |
|    | (iii)How many four letter word can be made.                                  | (4 marks)      |
| c) | In how many ways can six people sit at around table.                         | (3 marks)      |
| d) | Given the line $10y + 4x = 12$ find a line parallel to it but passes through | a point (1, 2) |
|    |                                                                              | (5 marks)      |

#### **QUESTION FIVE (20 MARKS)**

a) Simplify

(i) 
$$\left[\frac{x^5 y^6}{x^9 y^4}\right]^{1/2}$$
 (2 marks)  
(ii)  $\sqrt{\frac{640 x^8 y^5}{10 x^4 y^9}}$  (2 marks)

(i) 
$$\log_2 32$$

(ii) 
$$\frac{\log_3 81 - \log_3 27}{\log_3 9}$$
 (2 marks)

c) Without using the calculator evaluate

(i) 
$$\log_{10}(100)^{-3}$$
 (2 marks)  
(ii)  $\log_4 \left(\frac{1}{16}\right)^{-1}$  (2 mark)

d) Evaluate 
$$\frac{8c_5}{5c_3}$$
 (1 mark)

e) Given  $\begin{bmatrix} 3x & 5\\ -1 & 4x \end{bmatrix} + \begin{bmatrix} 2y - 3\\ -6 - y \end{bmatrix} = \begin{bmatrix} 7 & 2\\ -7 & 2 \end{bmatrix}$ Find x & y

(4 marks)

(1 mark)

f) Using the inverse method

Solve the following system of linear equations. 2x - 3y = -7

3x + y = -5

(4 marks)