KENYA METHODIST UNIVERSITY FIRST TRIMESTER EXAMINATION April 2007

FACULTY	:	SCIENCES
DEPARTMENT	:	MATHEMATICS AND COMPUTER SCIENCE
COURSE CODE	:	COMP 302
COURSE TITLE	:	Digital Electronics
TIME	:	3 HRS

Instructions: Attempt Question 1 in Section A and any other two questions in Section B.

SECTION A QUESTION 1 (30 Mks)

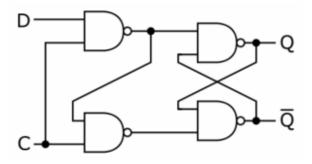
1. Convert the following binary numbers into decimal without the use of a calculator:

(a)	1101 (b) 111000 (c) 1001101 (d) 1011010	4 Mks
2.	Convert the following decimal numbers into binary: (a) 354 (b) 129 (c) 87 (d) 255	4 Mks
(a)	Perform the following additions/subtractions where the numbers are all positive 1011 (b) 10110110 (c) 1011011 (d) 11010 +01111 +01110110 -0110101 -10001	re: 3 Mks
4.	Convert the following hexadecimal numbers to (i) binary (ii) decimal and (iii) (a) 3416 (b) 1A116 (c) DB16	octal: 3 Mks
	Convert the following 8 bit 2's complement numbers to decimal: 10011011 (b) 11111111 (c) 01111110 (d) 00000010	4 Mks
(a)	Convert the following 16 bit 2's complement numbers to decimal and also to hexadecimal: 1000 1010 0110 1101 (b) 1000 0000 0000 0000 1000 0000 0000 000	4 Mks
7.	If a certain computer has 128 Kbytes of memory, how many bits (binary digits information can it store?) of 2 Mks
	Perform the following binary multiplications (You must show your calculation 1001 \Box 1110 (b) 10010111 \Box 10011000	working): 2 Mks
9.	Implement the following Boolean functions using simple AND, OR and NOT (do not simplify the functions):	logic gates
	F = AB + ABC + CD F = A BC + ABC + A B	4 Mks

SECTION B

QUESTION 2 (20 Mks)

1) Define the term flipflop	(1 Mk)
2) Differentiate between simple and clocked flipflops	(2 Mks)
3) Briefly discuss the type of flipflops and draw their truth tables	(15 Mks)
4) List any two uses of flipflops	(2 Mks)


Question 3 (20 Mks)

1)	Fill in the following truth	tables for Digital logic ba	sic gates (8 Mks)
1)	This in the following trut	tables for Digital logic ba	sic gailes (0 1115)

Α	В	AND	OR	XOR	NAND	NOR	NXOR
0	0						
0	1						
1	0						
1	1						

A1-	A1+A2 = Sum with car		vith carry
0	0		
0	1		
1	0		
1	1		

2) With the aid of the diagram below describe how a D-Latch functions. (4 Mks)

- 3) Give a brief description of the following shift registers. What are they used for?(8 Mks)
 - i. Destructive Readout
 - ii. Non-destructive readout
 - iii. Serial-In, Parallel-Out
 - iv. Parallel-In, Serial-Out
 - v. Parallel-In, Parallel-Out

Question 4 (20 Mks)

- 1) Prove the following axioms using set theory or truth tables. (10 Mks)
 - $\begin{array}{ll} a \lor (b \lor c) = (a \lor b) \lor c & a \land (b \land c) = (a \land b) \land c & \\ a \lor b = b \lor a & a \land b = b \land a & \\ a \lor (a \land b) = a & a \land (a \lor b) = a & \\ a \lor (b \land c) = (a \lor b) \land (a \lor c) & a \land (b \lor c) = (a \land b) \lor (a \land c) & \\ a \lor \neg a = 1 & a \land \neg a = 0 & \\ \end{array}$
- 2) Define the term Karnaugh map and subsequently arrange the following two variable problem to correspond to one. (5 Mks)

А	В	F
0	0	a
0	1	b
1	0	c
1	1	d

3) Differentiate between Digital to Analog conversion and Analog to Digital conversion giving any relevant applications. (5 Mks)