KENYA METHODIST UNIVERSITY END OF TRIMESTER I 2007 EXAMINATION

FACULTY:	SCIENCE
DEPARTMENT:	MATHEMATICS AND COMPUTER SCIENCE
COURSE CODE:	COMP 422
COURSE TITLE:	AUTOMATA AND FORMAL LANGUAGES
TIME :	3Hrs

INSTRUCTIONS: Answer Question ONE (Compulsory) and ANY OTHER TWO questions:

Question One (20 Marks):

(a.) Define:	
i. Finite state automata	
ii. Nondeterminism	
iii. Regular expression	
iv. Decision problem	(4 marks)
(b.) Assuming the alphabet {a,b}, give a pattern that matches each of the following:	
i. Strings containing at least three occurrences of letter a.	
ii. Strings with no occurrences of letter a.	(2 marks)
(c.) Describe Church's thesis and its relationship to Turing machines	
	(4 marks)
(d.) Give a deterministic finite state automaton that accepts the regular set	
$\{x \in \{a,b\}^* \mid x \text{ contains a substring with two consecutive a's}\}$	(4 marks)
(e.) Distinguish between a pushdown automata (PDA) and a finite state automata (F	SA)
	(2 marks)
(f.) For a set A, define:	
i. The powers A^n of A	
ii. The asterate A* of A	(4 marks)
Question Two (20 Marks):	
(a.) Briefly describe the halting problem	(3 marks)
(b.) Define:	
i. A monoid	(1 mark)
ii. Prefix for a string x	(2 marks)
iii. A pattern	(2 marks)
(c.) Run the cocke-kasami-younger algorithm on the string aab to show whether it's the language of the grammar	a sentence in

S→AB	
A→a	
$B \rightarrow AB \mid b$	(4 marks)

(d.) List the equivalence classes of the collapsing relation ≈ and construct a minimal DFA for the following DFA

	а	b
→1	1	4
2 3F	3	7
3F	3 4 3	2
4F	3	2 5 6 3 4
5	4	6
6	4 6 2 3	3
7	2	4
8	3	1

Question Three (20 Marks):

(a.) For a pushdown automata M, describe:

i. Configuration

ii. Acceptance

(b.) Consider the DFA:

Describe the set accepted by the automata

(c.) Consider the following two deterministic finite state automata:

	A	<u>b</u>		а	b
→1	1	2	→ 1	2	3
→1 2F	2	1	2	3	1
			3F	1	2

use product construction to construct a DFA accepting the intersection of the two sets accepted

by these automata

 (d.) Convert the following grammar into Chomsky normal form, briefly explaining your working: S→aSbb | T T→bTaa | S | ∈ (6 marks)

(e.) When is a turing machine said to be <u>total</u>?

Question Four (20 Marks): Describe a deterministic one-tape turing machine and how it works. (4 marks) (a.) (b.) Describe the Chomsky normal form. (2 marks) Briefly describe how the cocke-kasami-younger algorithm works. (5 marks) (c.) (d.) Give an NFA, with four states, equivalent to the regular expression $(01^+011^+0111)^*$ (4 marks) (e.) Give the regular expression equivalent to the following DFA b 2 1 2F | 2 1 (2 marks)

(4 marks)

(2 marks)

(2 marks)

(8 marks)

(4 marks)

(2 marks)