KENYA METHODIST UNIVERSITY
 FIRST TRIMESTER 2007 EXAMINATION

FACULTY : SCIENCES
DEPARTMENT : MATHEMATICS AND COMPUTER SCIENCE
COURSE CODE : MATH 104
COURSE TITLE : Calculus II
TIME : 3 HRS

Instructions: Attempt Question 1 in Section A and any other two questions in Section B.

SECTION A

QUESTION 1 (30 Mks)
a) Calculate $\frac{d y}{d x}$ if $\mathrm{y}=\int_{0}^{x^{2}} \cos t d t$
b) Evaluate the following integrals

$$
\begin{align*}
& \text { i. } \quad \int \sin (7 x+5) d x \tag{2mks}\\
& \text { ii. } \quad \int \frac{\cos 2 x}{\sin ^{3} 2 x} d x \tag{3Mks}
\end{align*}
$$

c) Let a, b, and m be positive numbers with $a<b$. Find the area under the graph $y=m x, a \leq x \leq b$.

Use inscribed rectangles.
(7Mks)
d) Estimate the area under the curve $f(x)=1+x^{2}$ with $a=0, b=1$, and $n=4$.
e) If f is continuous and $\mathrm{F}^{\prime}=\mathrm{f}$, then

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=F(b)-F(a) \text {. Prove } \tag{5Mks}
\end{equation*}
$$

f) Suppose f and g are continuous and that
$\int_{1}^{2} f(x) d x=-4$
$\int_{2}^{5} f(x) d x=6$
$\int_{1}^{5} g(x) d x=8$

Find
$\int_{1}^{5} f(x) d x$
$\int_{5}^{1}-4 f(x) d x$
$\int_{1}^{5} 4[f(x)-2 g(x)] d x$

Section B

Question Two: (20 Mks)
a) Verify the formular
(8Mks)
$\sum_{k=1}^{n} k^{2}=1^{2}+2^{2}+\ldots . .+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for $\mathrm{n}=1,2,3$. Then add $(\mathrm{n}+1)^{2}$ and thereby prove by mathematical induction that the formular is true for all positive integers.
b) Using the result of (i) show that the area under the graph of $y=x^{2}$ over the interval $0 \leq x \leq b$ is $\frac{b^{3}}{3}$
(6Mks)
c) Calculate the area bounded by the x-axis and the parabola $y=6-x-x^{2}$
(3Mks)

Question Three: (20 Mks)

a) Evaluate the following
(i) $\frac{x d x}{\sqrt{4-x^{2}}}$
(ii) $\frac{z+1 d z}{\sqrt[3]{3 z^{2}+6 z+5}}$
(6Mks)
b) Approximate $\int_{0}^{1} 4 x^{3} d x$ by the Trapezoidal rule and by Simpson's rule with $\mathrm{n}=2$.
c) Estimate the error in using (a) the Trapezoidal rule and (b)Simpson's rule to approximate $\int_{1}^{2} \frac{1}{x} d x$ with $\mathrm{n}=10$.
d) How many subdivisions should be used in the trapezoidal rule to approximate

$$
\begin{equation*}
\text { In2 }=\int_{1}^{2} \frac{1}{x} d x \text { with an error of less than } 10^{-4} \tag{4Mks}
\end{equation*}
$$

Question 4: (20 Mks)

a) Let F denote the resultant of all forces acting on a particle of mass m and let the direction of F remain constant. Prove that whether the magnitude of F is constant or variable, the work done on the particle by the force F is $\mathrm{W}=\Delta$ (K.E)
b) A thin homogenous wire is bent to form a semi - circle of radius r. Find its center of mass.
(6Mks)
c) Find the area of the surface obtained by revolving the curve.
$y=V_{x}, 0 \leq x \leq 2$ about the x - axis.
d) Suppose the above curve is rotated about the x - axis to generate a circle. Find its volume. (2MKs)
e) Find the area bounded by the parabola $y=2-x^{2}$ and the straight line $y=-x$.

