KENYA METHODIST UNIVERSITY

FIRST TRIMESTER 2007 EXAMINATION

FACULTY: SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

COURSE CODE : MATH 104
COURSE TITLE : Calculus II
TIME : 3 HRS

Instructions: Attempt Question 1 in **Section A** and any other two questions in **Section B**.

SECTION A QUESTION 1 (30 Mks)

a) Calculate
$$\frac{dy}{dx}$$
 if $y = \int_0^{x^2} \cos t dt$ (2Mks)

b) Evaluate the following integrals

i.
$$\int \sin(7x+5) dx$$
 (2mks)

ii.
$$\int \frac{\cos 2x}{\sin^3 2x} dx$$
 (3Mks)

- c) Let a, b, and m be positive numbers with a
b. Find the area under the graph y = mx, $a \le x \le b$.
Use inscribed rectangles. (7Mks)
- d) Estimate the area under the curve $f(x) = 1+x^2$ with a = 0, b=1, and n = 4. (5Mks)
- e) If f is continuous and F' = f, then $\int_{a}^{b} f(x)dx = F(b) F(a) \cdot \text{Prove}$ (5Mks)
- f) Suppose f and g are continuous and that

$$\int_{1}^{2} f(x)dx = -4 \qquad \qquad \int_{2}^{5} f(x)dx = 6 \qquad \qquad \int_{1}^{5} g(x)dx = 8$$

Find

$$\int_{1}^{5} f(x)dx \qquad \qquad \int_{5}^{1} -4 f(x)dx \qquad \qquad \int_{1}^{5} 4[f(x) - 2g(x)]dx \quad \text{(6Mks)}$$

Section B

Question Two: (20 Mks)

a) Verify the formular (8Mks)

 $\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ for n = 1,2,3. Then add $(n+1)^2$ and thereby prove by mathematical induction that the formular is true for all positive integers.

- b) Using the result of (i) show that the area under the graph of $y = x^2$ over the interval $0 \le x \le b$ is $\frac{b^3}{3}$ (6Mks)
- c) Calculate the area bounded by the x-axis and the parabola $y = 6 x x^2$ (3Mks)
- d) Find the total area bounded by the curve $y = x^3 4x$ and the x axis. (3Mks)

Question Three: (20 Mks)

a) Evaluate the following

(i)
$$\frac{xdx}{\sqrt{4-x^2}}$$
 (ii) $\frac{z+1dz}{\sqrt[3]{3z^2+6z+5}}$ (6Mks)

- b) Approximate $\int_0^1 4 x^3 dx$ by the Trapezoidal rule and by Simpson's rule with n = 2. (5Mks)
- c) Estimate the error in using (a) the Trapezoidal rule and (b)Simpson's rule to approximate

$$\int_{-\frac{1}{x}}^{2} dx \text{ with n=10.}$$
 (5Mks)

d) How many subdivisions should be used in the trapezoidal rule to approximate

In2 =
$$\int_{1}^{2} \frac{1}{x} dx$$
 with an error of less than 10⁻⁴ (4Mks)

Question 4: (20 Mks)

- a) Let F denote the resultant of all forces acting on a particle of mass m and let the direction of F remain constant. Prove that whether the magnitude of F is constant or variable, the work done on the particle by the force F is $W = \Delta(K.E)$ 5Mks)
- b) A thin homogenous wire is bent to form a semi circle of radius r. Find its center of mass. (6Mks)
- c) Find the area of the surface obtained by revolving the curve.

$$y = \sqrt{x}, 0 \le x \le 2$$
 about the x- axis. (4Mks)

- d) Suppose the above curve is rotated about the x axis to generate a circle. Find its volume. (2MKs)
- e) Find the area bounded by the parabola $y = 2 x^2$ and the straight line y = -x. (5Mks)