KENYA METHODIST UNIVERSITY

2nd TRIMESTER SCHOOL BASED EXAMINATION April 2007

FACULTY: SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

COURSE CODE : MATH 104 COURSE TITLE : Calculus II TIME : 3 HRS

Instructions: Attempt Question 1 in **Section A** and any other two questions in **Section B**.

SECTION A

Question 1 (30 Mks)

1. Solve the differential equation

i.
$$\frac{dy}{dx} = 3x^2$$

2. Evaluate the following integrals

$$\int (5x - x^2 + 2) dx$$

$$\int \cos 2x dx$$

$$\int \frac{\cos 2x}{\sin^3 x} dx$$

$$\int (x^2+5) dx$$

- 3. Estimate the area under the curve $f(x) = 1+x^2$ with a = 0, b = 1, and n = 4. (use inscribed rectangles)
- 4. Suppose f and g are continuous and that

$$\int_{-1}^{1} f(x)dx = -4 \qquad \int_{1}^{5} f(x)dx = 6 \quad \int_{1}^{5} g(x)dx = 8$$

$$\int_{1}^{5} f(x)dx \qquad \int_{5}^{1} -4f(x)dx \qquad \int_{1}^{5} [4f(x) - 2g(x)]dx$$

5. Find the area under the graph of
$$y = x^2$$
, $0 \le x \le b$. use
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

SECTION B

Question 2 (20 Mks)

a) Find an antiderivative of each of the following functions

(10mks)

i.
$$F(x) = \cos 6x + 3\sin^2 x$$

ii.
$$G(x) = sec^2(5x)$$

iii.
$$V(t) = 9\sec 3t \tan 3t$$

iv. $W(x) = x^2 + \csc^2 x$
v. $H(x) = e^{2x} + e^{-2x}$

v.
$$H(x) = e^{2x} + e^{-2x}$$

b) Find the derivative of the following functions

(2 mks)

i.
$$g(x) = \int_{0}^{x} \sqrt{t^4 + t^2 + 1} dt$$

ii.
$$f(x) = \int_{-3}^{x} \frac{(t-2)(t-3)}{t^4 + 16}$$

c) Find solutions to the following

(8 mks)

i.
$$\int_{2}^{5} (x^2 - x + 3) dx$$

ii.
$$\int_{-1}^{1} (x-3)(3x-1)dx$$

$$\lim_{\text{iii.}} \int_{\frac{\Pi}{6}}^{\frac{\pi}{3}} (2\sin x + \cos x) dx$$

iv.
$$\int_{0}^{2} (x-3)(2x-5)dx$$

Question 3 (20 Mks)

Find the following

i.
$$\int (2x+1)(x^2+x+5)^{17}dx$$

$$ii. \int \frac{2x+5}{\sqrt{x^2+5x+8}} dx$$

iii.
$$\int \frac{3x^2}{(x^3-1)^5} dx$$

iv.
$$\int 4x(x^2+9)^{\frac{5}{2}}dx$$

v.
$$\int \frac{5}{\sqrt{x}(3\sqrt{x}+4)^{\frac{3}{5}}} dx$$

vi.
$$\int x \sec(x^2) \tan(x^2) dx$$

vii.
$$\int x \sin(x^2 + 1) dx$$

viii.
$$\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$$

ix.
$$\int \sin^3 x \cos x dx$$

x.
$$\int \sin x \cos^4 x dx$$

Question 4 (20 mks)

a) The acceleration of gravity near the surface of the earth is 9.8m/sec². This means that the velocity v of a body falling freely in a vacuum changes at the rate of

$$\frac{dv}{dt} = 9.8m/\sec^2$$

If the body is dropped from rest, what will its velocity be t seconds after it is released? (5 mks)

b) Evaluate the following (5 mks)

i.
$$\sum_{k=1}^{n} (3k - k^2)$$

ii.
$$\sum_{k=1}^{n} (-a_k)$$

iii.
$$\sum_{k=1}^{3} (k+4)$$

iv.
$$\sum_{k=1}^{4} (k^2 - 3k)$$

c) A heavy projectile is fired straight up from a platform 3m above the ground, with an initial velocity of 160m/sec². Assume that the only force affecting the projectile during its flight is from gravity, which produces a downward acceleration of 9.8m/sec². Find an equation for the projectile's height above the ground as a function of time t if t = 0 when the projectile is fired. How high above the ground is the projectile 3sec after firing? (10 mks)