KENYA METHODIST UNIVERSITY
 2nd TRIMESTER SCHOOL BASED EXAMINATION
 April 2007

FACULTY : SCIENCES
DEPARTMENT : MATHEMATICS AND COMPUTER SCIENCE
COURSE CODE : MATH 104
COURSE TITLE : Calculus II
TIME : 3 HRS

Instructions: Attempt Question 1 in Section A and any other two questions in Section B.

SECTION A

Question 1 (30 Mks)

1. Solve the differential equation

$$
\text { i. } \quad \frac{d y}{d x}=3 x^{2}
$$

2. Evaluate the following integrals
$\int\left(5 x-x^{2}+2\right) d x \quad \int\left(x^{2}+5\right) d x$
$\int \cos 2 x d x$
$\int \sin (7 x+5) d x$
$\int \frac{\cos 2 x}{\sin ^{3} x} d x$
3. Estimate the area under the curve $f(x)=1+x^{2}$ with $a=0, b=1$, and $n=4$. (use inscribed rectangles)
4. Suppose f and g are continuous and that
$\int_{-1}^{1} f(x) d x=-4 \quad \int_{1}^{5} f(x) d x=6 \quad \int_{1}^{5} g(x) d x=8$
find
$\int_{1}^{5} f(x) d x \quad \int_{5}^{1}-4 f(x) d x \int_{1}^{5}[4 f(x)-2 g(x)] d x$
5. Find the area under the graph of $\mathrm{y}=\mathrm{x}^{2}, 0 \leq \mathrm{x} \leq \mathrm{b}$. use $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$

SECTION B

Question 2 (20 Mks)
a) Find an antiderivative of each of the following functions
(10mks)
i. $F(x)=\cos 6 x+3 \sin ^{2} x$
ii. $G(x)=\sec ^{2}(5 x)$
iii. $V(t)=9 \sec 3 t \tan 3 t$
iv. $W(x)=x^{2}+\csc ^{2} x$
v. $H(x)=e^{2 x}+e^{-2 x}$
b) Find the derivative of the following functions
i. $g(x)=\int_{0}^{x} \sqrt{t^{4}+t^{2}+1} d t$
ii. $f(x)=\int_{-3}^{x} \frac{(t-2)(t-3)}{t^{4}+16}$
c) Find solutions to the following
i. $\int_{2}^{5}\left(x^{2}-x+3\right) d x$
ii. $\int_{-1}^{1}(x-3)(3 x-1) d x$
iii. $\int_{\frac{\Pi}{6}}^{\frac{\Pi}{3}}(2 \sin x+\cos x) d x$
iv. $\int_{0}^{2}(x-3)(2 x-5) d x$

Question 3 (20 Mks)

Find the following
i. $\int(2 x+1)\left(x^{2}+x+5\right)^{17} d x$
ii. $\int \frac{2 x+5}{\sqrt{x^{2}+5 x+8}} d x$
iii. $\int \frac{3 x^{2}}{\left(x^{3}-1\right)^{5}} d x$
iv. $\int 4 x\left(x^{2}+9\right)^{\frac{5}{2}} d x$
v. $\int \frac{5}{\sqrt{x}(3 \sqrt{x}+4)^{\frac{3}{5}}} d x$
vi. $\int x \sec \left(x^{2}\right) \tan \left(x^{2}\right) d x$
vii. $\int x \sin \left(x^{2}+1\right) d x$
viii. $\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x$
ix. $\int \sin ^{3} x \cos x d x$
x. $\int \sin x \cos ^{4} x d x$

Question 4 (20 mks)

a) The acceleration of gravity near the surface of the earth is $9.8 \mathrm{~m} / \mathrm{sec}^{2}$. This means that the velocity v of a body falling freely in a vacuum changes at the rate of
$\frac{d v}{d t}=9.8 m / \sec ^{2}$
If the body is dropped from rest, what will its velocity be t seconds after it is released?
b) Evaluate the following
i. $\sum_{k=1}^{n}\left(3 k-k^{2}\right)$
ii. $\sum_{k=1}^{n}\left(-a_{k}\right)$
iii. $\sum_{k=1}^{3}(k+4)$
iv. $\sum_{k=1}^{4}\left(k^{2}-3 k\right)$
c) A heavy projectile is fired straight up from a platform 3 m above the ground, with an initial velocity of $160 \mathrm{~m} / \mathrm{sec}^{2}$. Assume that the only force affecting the projectile during its flight is from gravity, which produces a downward acceleration of $9.8 \mathrm{~m} / \mathrm{sec}^{2}$. Find an equation for the projectile's height above the ground as a function of time t if $t=0$ when the projectile is fired. How high above the ground is the projectile 3 sec after firing?
(10 mks)

