KENYA METHODIST UNIVERSITY FIRST TRIMESTER EXAMINATION

:	SCIENCES
:	MATHEMATICS AND COMPUTER SCIENCE
:	MATH 130
:	Basic Statistics
:	3 HRS
	: : : :

Attempt Question 1 in Section A and any other two questions in Section B. Instructions: You have been provided with a graph paper and tables.

SECTION A QUESTION 1 (30 Mks)

a) Consider the $\{2, -2, \sqrt{2}, -8/5, \end{bmatrix}$	following subset of real numbers. $[, \sqrt{-7}, 19, 18]$.	
List the numbers	in this set that are	
i)	Integers	(1Mk)
ii)	Irrational numbers	(1Mk)
iii)	Real numbers	(1Mk)

b) Evaluate the following expressions given x = -2, y = 4, z = 1/3, a = -1, b = 1/3

i)	$\frac{3y^2 - 4x}{ax + by}$	(1Mk)
ii)	$\frac{y^3}{x^3} - 4\frac{a^2}{b^2} - \frac{xy}{z^2}$	(1Mk)

c)	Factorize con	npletely	
,	i)	$4a^{2}b^{3} - 10a^{3}b^{2} + 8a^{4}b^{3}$	(1Mk)
	ii)	(3 + a)b - (3 + a)c	(1Mk)
	iii)	$5x^2 + 11x + 2$	(2Mks)
	iv)	$x^3 - 36x$	(1Mk)

d) Solve the equations

i)
$$\frac{15}{x} - 4 = \frac{6}{x} + 3$$
 (2Mks)
ii) $\frac{1}{4-x} = \frac{-6}{x+4} + \frac{2x}{16-x^2}$ (2Mks)

e) Solve the inequalities

i)
$$\frac{4+x}{-3} \le \frac{2-3x}{5} \le \frac{2x-1}{3}$$
 (2Mks)

ii)
$$4x + 1 \le 8x - 2 \le 12$$
 (2Mks)
f) Solve using graphical method (4Mks)

i) 2x - y = 4ii) x + y = 5

- g) If the probability of success in a certain event is p = 0.6 and the event is repeated 20 times, find the mean and variance of a success in this activity. (4Mks)
- h) Find the following probabilities for standard normal random variable z.

i)	P(z > 1.6)	(1 Mk)
ii)	$P(-2.16 < z \le 0.55)$	(3Mks)

Section B

Question Two: (20 Mks)

a)	Define the fo	ollowing terms	
	i)	Population	(1Mk)
	ii)	Sample	(1 Mk)

b) A sample of 50 antique dealers in Maasai Market revealed the following sales last month.

Sales	Number of
(\$thousands)	firms
110	5
130	7
150	9
170	16
190	10
210	3

i)	Estimate the mean sales	(2 Mks)
ii)	Estimate the median sales.	(2 Mks)

c) Refer to the following frequency distribution

Class	Frequency
0-5	2
5-10	7
10 – 15	12
15 - 20	6
20 - 25	3

i)	Estimate the variance.	(4 Mks)
ii)	Estimate the standard deviation.	(1 Mk)

- d) Describe three limitations of Statistics (3Mks)
- e) A bakery makes \$ 1.60 for every cake sold, but loses \$2.70 on every cake not sold as it is thrown away. If 250 cakes are baked every week, how many cakes must be sold each week in order to have a net profit per week of atleast \$200?
 (3Mks)
- f) The sum of two numbers is 37. If the large is divided by the smaller, the quotient is 3 and the remainder is 5. Find the numbers. (3Mks)

Question Three: (20 Mks)

a) Refer to the following information on sales and advertising expense for the last 4 months.

Month	Advertising Expense (\$Million)	Sales Revenue (\$Million
July	2	7
August	1	3
September	3	8
October	4	10

Which variable is the independent variable? Which one is the dependent variable? (2 Mks)

- ii)Draw a scatter diagram.(3Mks)iii)Determine the coefficient of correlation(5Mks)iv)Interpret the strength of the correlation coefficient.(1Mk)v)Determine the regression equation.(5Mks)vi)Interpret the values of β_0 and β_1 .(2Mks)
 - vi) Interpret the values of B₀ and B₁. (2Mks)
 vii) Estimate sales when 3 million dollars is spent on advertising. (2Mks)

Question Four: (20 Mks)

i)

a) If $A = \{a, e, i, o, u\}$ and $B = \{a, w, x, i, z\}$

Find

i)	$A \cup B$	(1	Mk)
ii)	$A \cap B$	(1	Mk)

- b) Consider the experiment of rolling a six sided die. What is the probability of the event "an even number of spots appear face up?" (2Mks)
- c) What is the probability that a card chosen at random from a standard deck of cards will be either a King or Heart? (3Mks)
- d) A manufacturer of window frames knows that 5% of the production will have some type of minor defect that will require a slight adjustment. Assuming a binomial distribution, what is the probability that in a sample of 4 window frames;

i)	None will need adjustment?	(1 Mk)
ii)	Atleast 1 will need adjustment?	(2 Mks)
iii)	More than 2 will need adjustment?	(2 Mks)

e) A normal population has a mean of 50.0 and a standard deviation of 4.0

i)	Compute the probability of a value between 44.0 and 55.0	(1Mk)
ii)	Compute the probability of a value greater than 55.0	(2Mks)
iii)	Compute the probability of a value between 52.0 and 55.0	(3Mks)
	Determine the real of the large -1 is $0.50/$ of the real of -1	

iv) Determine the value of x below which 95% of the values will occur. (2Mks)