KENYA METHODIST UNIVERSITY
 FIRST TRIMESTER EXAMINATION

FACULTY : SCIENCES
DEPARTMENT : MATHEMATICS AND COMPUTER SCIENCE
COURSE CODE : MATH 130
COURSE TITLE : Basic Statistics
TIME : 3 HRS

Instructions: Attempt Question 1 in Section A and any other two questions in Section B. You have been provided with a graph paper and tables.

SECTION A

QUESTION 1 (30 Mks)
a) Consider the following subset of real numbers.
$\{2,-2, \sqrt{ } 2,-8 / 5, \Pi, \sqrt{ }-7,19,18\}$.
List the numbers in this set that are

i)	Integers	$\mathbf{(1 M k})$
ii)	Irrational numbers	$(\mathbf{M k})$
iii)	Real numbers	$\mathbf{(1 M k)}$

b) Evaluate the following expressions given $x=-2, y=4, z=1 / 3, a=-1, b=1 / 3$
i) $\frac{3 y^{2}-4 x}{a x+b y}$
(1Mk)
ii) $\frac{y^{3}}{x^{3}}-4 \frac{a^{2}}{b^{2}}-\frac{x y}{z^{2}}$
(1 Mk)
c) Factorize completely
i) $\quad 4 a^{2} b^{3}-10 a^{3} b^{2}+8 a^{4} b^{3}$
(1Mk)
ii) $(3+a) b-(3+a) c$
(1Mk)
iii) $\quad 5 x^{2}+11 x+2$
(2Mks)
iv) $\quad x^{3}-36 x$
(1Mk)
d) Solve the equations
i) $\frac{15}{x}-4=\frac{6}{x}+3$
(2Mks)
ii) $\frac{1}{4-x}=\frac{-6}{x+4}+\frac{2 x}{16-x^{2}}$
(2Mks)
e) Solve the inequalities
i) $\quad \frac{4+x}{-3} \leq \frac{2-3 x}{5} \leq \frac{2 x-1}{3}$
(2Mks)
ii) $\quad 4 \mathrm{x}+1 \leq 8 \mathrm{x}-2 \leq 12$
(2Mks)
f) Solve using graphical method
(4Mks)
i) $\quad 2 x-y=4$
ii) $\quad x+y=5$
g) If the probability of success in a certain event is $p=0.6$ and the event is repeated 20 times, find the mean and variance of a success in this activity.
h) Find the following probabilities for standard normal random variable z.
i) $\quad \mathrm{P}(\mathrm{z}>1.6)$
ii) $\quad \mathrm{P}(-2.16<\mathrm{z} \leq 0.55)$
($\mathbf{1 M k}$)
(3Mks)

Section B

Question Two: (20 Mks)

a) Define the following terms
i) Population
($\mathbf{1 M k}$)
ii) Sample
(1Mk)
b) A sample of 50 antique dealers in Maasai Market revealed the following sales last month.

Sales (\$thousands)	Number of firms
110	5
130	7
150	9
170	16
190	10
210	3

i) Estimate the mean sales (2Mks)
ii) Estimate the median sales.
(2Mks)
c) Refer to the following frequency distribution

Class	Frequency
$0-5$	2
$5-10$	7
$10-15$	12
$15-20$	6
$20-25$	3

i) Estimate the variance.
(4Mks)
ii) Estimate the standard deviation.
d) Describe three limitations of Statistics
(3Mks)
e) A bakery makes $\$ 1.60$ for every cake sold, but loses $\$ 2.70$ on every cake not sold as it is thrown away. If 250 cakes are baked every week, how many cakes must be sold each week in order to have a net profit per week of atleast $\$ 200$?
(3Mks)
f) The sum of two numbers is 37 . If the large is divided by the smaller, the quotient is 3 and the remainder is 5 . Find the numbers.
(3Mks)

Question Three: (20 Mks)

a) Refer to the following information on sales and advertising expense for the last 4 months.

Month	Advertising Expense (\$Million)	Sales Revenue (\$Million
July	2	7
August	1	3
September	3	8
October	4	10

i) Which variable is the independent variable? Which one is the dependent variable? ($\mathbf{2} \mathbf{M k s}$)
ii) Draw a scatter diagram.
(3Mks)
iii) Determine the coefficient of correlation (5Mks)
iv) Interpret the strength of the correlation coefficient.
v) Determine the regression equation.
vi) Interpret the values of β_{0} and β_{1}.
vii) Estimate sales when 3 million dollars is spent on advertising.

Question Four: (20 Mks)
a) If $\mathrm{A}=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{w}, \mathrm{x}, \mathrm{i}, \mathrm{z}\}$

Find
i) $\quad A \cup B$
($\mathbf{1 M k}$)
ii) $\quad A \cap B$
(1Mk)
b) Consider the experiment of rolling a six - sided die. What is the probability of the event "an even number of spots appear face up?"
(2Mks)
c) What is the probability that a card chosen at random from a standard deck of cards will be either a King or Heart?
d) A manufacturer of window frames knows that 5% of the production will have some type of minor defect that will require a slight adjustment. Assuming a binomial distribution, what is the probability that in a sample of 4 window frames;
i) None will need adjustment? (1Mk)
ii) Atleast 1 will need adjustment?
iii) More than 2 will need adjustment?
e) A normal population has a mean of 50.0 and a standard deviation of 4.0
i) Compute the probability of a value between 44.0 and $55.0 \quad$ ($\mathbf{1 M k}$)
ii) Compute the probability of a value greater than 55.0
iii) Compute the probability of a value between 52.0 and 55.0
iv) Determine the value of x below which 95% of the values will occur. (2Mks)

