KENYA METHODIST UNIVERSITY **END OF FIRST TRIMESTER 2007 EXAMINATIONS**

FACULTY	:	SCIENCES
DEPARTMENT	:	MATHEMATICS AND COMPUTER SCIENCE
COURSE CODE	:	MATH 210
COURSE TITLE	:	LINEAR ALGEBRA II
TIME	:	2 HRS

Instructions:

Answer question 1 and any other 2 questions.

Question 1

- Find the matrix representation of the linear map $F:\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by F(x, y) = (2x 5y, 3x + y)a) relative to the basis $\{u_1 = (2,1), u_2 = (3,2)\}$ of \mathbb{R}^2 relative to the basis $\{u_1 = (2,1), u_2 = (3,2)\}$ of \mathbb{R}^2 (5 mks) Find the coordinates of an arbitrary vector (a,b) in \mathbb{R}^2 with respect to the basis $s_1 = \{u_1, u_2\}$, where
- b) $u_1 = (1, -2), u_2 = (3, -4)$ (5 mks)
- Find the cost θ for the angle θ between u = (5,1) and v = (-2, 3) in Euclidean 2-space R². In which c) quadrant does θ lie? (5 mks)

d) Find a unit vector orthogonal to
$$V_1 = (1,1,2)$$
 and $V_2 = (0,1,3)$ in \mathbb{R}^3 . (5 mks)

Verify the Cayley-Hamilton theorem for A = $\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$ e) (5 mks)

Find the quadratic form q(x,y) corresponding to the symmetric matrix $A = \begin{pmatrix} 5 & -3 \\ -3 & 8 \end{pmatrix}$ f) (5 mks)

Ouestion 2

Consider the vector space V of 2x2 matrices over R and the following usual basis E of V: a)

$$\mathbf{E} = \left\{ E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

Let $M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and T be the linear operator on V defined by T(A) = MA. Find the matrix representation of T relative to the above usual basis of V. (10 mks)

Let $A = \begin{pmatrix} 2 & 3 & -4 \\ 4 & -6 & 3 \\ 1 & 4 & 2 \end{pmatrix}$ b)

> let B be the matrix representation of the linear map $A: R^3 \longrightarrow R^3$ relative to the basis $\{(1,1,2), (2,3,5), (1,4,6)\}$ Find B. (10 mks)

Question 3

Consider two inner products f and g on the same vector space V. Use the functional notation f(u,v)a) and g(u,v) to denote the inner products of u and v under f and g respectively. Show that the sum f + g, defined by (f+g)(u,v) = f(u,v) + g(u,v) is also an inner product on V. (10 mks)

b) i) suppose $\mathbf{M} = \begin{pmatrix} A_1 & B \\ 0 & A_2 \end{pmatrix}$ where A_1 and A_2 are square matrices. Show that the characteristic

polynomial of M is the product of the characteristic polynomials of A_1 and A_2 (6 mks)

ii) Generalize the statement in part b(i) above. (4 mks)

Question 4

a) Given the matrix $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$ i) Compute the eigenvalues and eigenvectors for A. (6 mks) ii) Determine whether or not a nonsingular matrix P exists such that P⁻¹AP is diagonal. (4 mks)

b) Consider the matrix $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 3 & 4 \\ 7 & -5 & 2 \end{pmatrix}$ answer the following with adequate reasons:

- i) Are the rows of A orthogonal?
- ii) Is A an orthogonal matrix?
- iii) Are the columns of A orthogonal?
- iv) Let B be the matrix obtained by normalizing each row of A. Find B and whether B is an orthogonal matrix. Are the columns of B orthogonal? (4 mks)

(2 mks)

(2 mks)

(2 mks)

Question 5

- a) i) Let f and g be bilinear forms on a vector space V. Show that the sum f+g, defined by (f+g)(u,v) = f(u,v) + g(u,v), is bilinear. (6 mks)
 - ii) Let f be a bilinear form of a vector space V and let k belong to a field K. Show that the map f, defined by (kf)(u,v) = kf(u,v), is bilinear. (6 mks)
- b) Suppose T is the operator on the vector space V of 2- squares matrices over a field K defined by T(A) = MA where:

$$\mathbf{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Find det(T)

(8 mks)