KENYA METHODIST UNIVERSITY
 END OF FIRST TRIMESTER 2007 EXAMINATIONS

FACULTY : SCIENCES
DEPARTMENT : MATHEMATICS AND COMPUTER SCIENCE
COURSE CODE : MATH 210
COURSE TITLE : LINEAR ALGEBRA II
TIME : 2 HRS

Instructions:

- Answer question 1 and any other 2 questions.

Question 1

a) Find the matrix representation of the linear map $\mathrm{F}: \mathrm{R}^{2} \longrightarrow \mathrm{R}^{2}$ defined by $\mathrm{F}(x, y)=(2 x-5 y, 3 x+y)$ relative to the basis $\left\{u_{1}=(2,1), u_{2}=(3,2)\right\}$ of R^{2}
b) Find the coordinates of an arbitrary vector (a,b) in R^{2} with respect to the basis $\mathrm{s}_{1}=\left\{u_{1}, u_{2}\right\}$, where

$$
\begin{equation*}
\mathrm{u}_{1}=(1,-2), \mathrm{u}_{2}=(3,-4) \tag{5mks}
\end{equation*}
$$

c) Find the cost θ for the angle θ between $u=(5,1)$ and $v=(-2,3)$ in Euclidean 2-space R^{2}. In which quadrant does θ lie?
d) Find a unit vector orthogonal to $\mathrm{V}_{1}=(1,1,2)$ and $\mathrm{V}_{2}=(0,1,3)$ in R^{3}.
e) Verify the Cayley-Hamilton theorem for $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right)$
f) Find the quadratic form $\mathrm{q}(\mathrm{x}, \mathrm{y})$ corresponding to the symmetric matrix $\mathrm{A}=\left(\begin{array}{cc}5 & -3 \\ -3 & 8\end{array}\right) \quad$ (5 mks)

Question 2

a) Consider the vector space V of 2×2 matrices over R and the following usual basis E of V :

$$
\mathrm{E}=\left\{E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), E_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), E_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

Let $\mathrm{M}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and T be the linear operator on V defined by $\mathrm{T}(\mathrm{A})=\mathrm{MA}$. Find the matrix representation of T relative to the above usual basis of V .
b) Let $\mathrm{A}=\left(\begin{array}{ccc}2 & 3 & -4 \\ 4 & -6 & 3 \\ 1 & 4 & -2\end{array}\right)$
let B be the matrix representation of the linear map $A: R^{3} \longrightarrow R^{3}$ relative to the basis $\{(1,1,2),(2,3,5),(1,4,6)\}$ Find B.

Question 3

a) Consider two inner products f and g on the same vector space V. Use the functional notation $f(u, v)$ and $g(u, v)$ to denote the inner products of u and v under f and g respectively. Show that the sum $\mathrm{f}+\mathrm{g}$, defined by $(\mathrm{f}+\mathrm{g})(\mathrm{u}, \mathrm{v})=\mathrm{f}(\mathrm{u}, \mathrm{v})+\mathrm{g}(\mathrm{u}, \mathrm{v})$ is also an inner product on V .
b) i) suppose $\mathrm{M}=\left(\begin{array}{cc}A_{1} & B \\ 0 & A_{2}\end{array}\right)$ where A_{1} and A_{2} are square matrices. Show that the characteristic polynomial of M is the product of the characteristic polynomials of A_{1} and A_{2}
ii) Generalize the statement in part b (i) above.

Question 4

a) Given the matrix $\mathrm{A}=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$
i) Compute the eigenvalues and eigenvectors for A .
ii) Determine whether or not a nonsingular matrix P exists such that $\mathrm{P}^{-1} \mathrm{AP}$ is diagonal.
(4 mks)
b) Consider the matrix $\mathrm{A}=\left(\begin{array}{ccc}1 & 1 & -1 \\ 1 & 3 & 4 \\ 7 & -5 & 2\end{array}\right)$ answer the following with adequate reasons:
i) Are the rows of A orthogonal?
ii) Is A an orthogonal matrix?
iii) Are the columns of A orthogonal?
iv) Let B be the matrix obtained by normalizing each row of A. Find B and whether B is an orthogonal matrix. Are the columns of B orthogonal?

Question 5

a) i) Let f and g be bilinear forms on a vector space V. Show that the sum $f+g$, defined by $(\mathrm{f}+\mathrm{g})(\mathrm{u}, \mathrm{v})=\mathrm{f}(\mathrm{u}, \mathrm{v})+\mathrm{g}(\mathrm{u}, \mathrm{v})$, is bilinear.
ii) Let f be a bilinear form of a vector space V and let k belong to a field K . Show that the map f, defined by $(k f)(u, v)=k f(u, v)$, is bilinear.
(6 mks)
b) Suppose T is the operator on the vector space V of 2- squares matrices over a field K defined by $\mathrm{T}(\mathrm{A})=$ MA where:

$$
\mathrm{M}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Find $\operatorname{det}(T)$

