KENYA METHODIST UNIVERSITY

END OF SECOND TRIMESTER 2006/2007 EXAMINATIONS

FACULTY: SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

COURSE CODE : MATH 331

COURSE TITLE : OPERATIONS RESEARCH I

TIME : 3 HRS

Instructions:

• Answer question 1 (compulsory) and any other 2 questions in section B.

Question 1 (30 marks)

a) State and explain briefly three main basic elements of a mathematical model in operations research.

(3 mks)

b) Define the following:

i) a feasible solution

ii) an optimal solution

(2 mks)

c) Ozark farms uses at least 800 kg of special feed daily. The special feed is a mixture of corn and soybean meal with the following composition.

Feed stuff	protein	Fiber	Cost (Sh/Kg)
Corn	0.09	0.02	30
Soybean	0.60	0.06	90

The dietary requirements of the special feed stipulate at least 30% protein and atmost 5% fiber. Ozark farms wishes to determine the daily minimum cost feed mix.

i) Form a linear optimization model.

(4 mks)

ii) Use graphical method to solve the linear programming model in (i) above.

(5 mks)

d) Write the following linear programme in standard form

Minimize
$$x_0 = 10x_1 + 5x_2 + 20x_3$$

Subject to: $x_1 + x_2 + 2x_3 \ge 10$
 $2x_1 + x_2 + 3x_3 \ge 20$
 $x_2 + 2x_3 = 5$

$$x_1$$
 is unrestricted, $x_2, x_3 \ge 0$ (5 mks)

e) Write the dual of the following linear programme:

Max z =
$$10x_1 + 20x_2 + 15x_3 + 40x_4$$

Subject to $x_1 + 2x_2 + 4x_4 \ge 10$
 $2x_1 + x_2 + 3x_3 + x_4 \ge 30$
 $x_2 + x_3 + 2x_4 \le 10$

$$x_1, x_2, x_4 \ge 0, x_3$$
 is unrestricted.

(5 mks)

f) Consider the following linear programming problem:

Max
$$x_0 = 3x_1 + 2x_2 + 5x_3$$

Subject to $x_1 + 2x_2 + x_3 \le 430$
 $3x_1 + 2x_3 \le 460$
 $x_1 + 4x_3 \le 420$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

Obtain the standard form of this programme and find the optimum solution.

(6 mks)

Question 2 (20 marks)

a) State the three main properties of a general linear programming problem. (3 mks)

b) Consider the following linear programming problem:

Minimize
$$x_0 = 20x_1 + 30x_2 + 50x_3 + 40x_4$$

Subject to
$$4x_1 + 6x_2 + x_3 + 2x_4 \ge 12$$

$$2x_1 + x_2 + 6x_3 + 5x_4 \ge 14$$

$$x_1 + 2x_2 + 4x_3 + 3x_4 \ge 8$$

$$xi \ge 0, i = 1, 2, 3, 4$$

- i) Write the complete dual of the above primal problem. (5 mks)
- ii) Use simplex method to find the optimal solution of the primal problem by solving the dual in (i) above. (12 mks)

Question 3 (20 marks)

a) Given the linear program

Minimize z =
$$4x_1 + x_2$$

 $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$

Apply the M-technique to solve the above linear programme.

(14 mks)

b) Use graphical method to solve the following linear program.

Maximize z =
$$5x_1+4x_2$$

 $6x_1+4x_2 \le 24$
 $x_1+4x_2 \le 6$
 $-x_1+2x_2 \le 1$
 $x_2 \le 2$

$$x_1 \ge 0, x \ge 0 \tag{6 mks}$$

Question 4 (20 marks)

a) Define a degenerate solution. (2 mks)

b) What are the possible implications of degeneracy in a linear program? (4 mks)

c) Solve the following linear programme using simplex method.

Max Z =
$$3x_1+9x_2$$

Subject to $x_1+4x_2 \le 8$
 $x_1+2x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$ (14 mks)