KENYA METHODIST UNIVERSITY
 END OF SECOND TRIMESTER 2006/2007 EXAMINATIONS

FACULTY	$:$	SCIENCES
DEPARTMENT	$:$	MATHEMATICS AND COMPUTER SCIENCE
COURSE CODE	$:$	MATH 331
COURSE TITLE	$:$	OPERATIONS RESEARCH I
TIME	$:$	3 HRS

Instructions:

- Answer question 1 (compulsory) and any other 2 questions in section B.

Question 1 (30 marks)

a) State and explain briefly three main basic elements of a mathematical model in operations research.
b) Define the following:
i) a feasible solution
ii) an optimal solution
(2 mks)
c) Ozark farms uses at least 800 kg of special feed daily. The special feed is a mixture of corn and soybean meal with the following composition.

Feed stuff	protein	Fiber	Cost $(\mathrm{Sh} / \mathrm{Kg})$
Corn	0.09	0.02	30
Soybean	0.60	0.06	90

The dietary requirements of the special feed stipulate at least 30% protein and atmost 5\% fiber. Ozark farms wishes to determine the daily minimum cost feed mix.
i) Form a linear optimization model. (4 mks)
ii) Use graphical method to solve the linear programming model in (i) above. (5 mks)
d) Write the following linear programme in standard form

$$
\begin{aligned}
& \text { Minimize } \mathrm{x}_{0}=10 x_{1}+5 x_{2}+20 x_{3} \\
& \text { Subject to : } \quad x_{1}+x_{2}+2 x_{3} \geq 10 \\
& 2 \mathrm{x}_{1}+x_{2}+3 x_{3} \geq 20 \\
& \mathrm{x}_{2}+2 x_{3}=5
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{x}_{1} \text { is unrestricted, } \mathrm{x}_{2}, x_{3}, \geq 0 \tag{5mks}
\end{equation*}
$$

e) Write the dual of the following linear programme:
$\operatorname{Max} z=10 x_{1}+20 x_{2}+15 x_{3}+40 x_{4}$
Subject to

$$
\begin{gathered}
\mathrm{x}_{1}+2 x_{2}+4 x_{4} \geq 10 \\
2 \mathrm{x}_{1}+x_{2}+3 x_{3}+x_{4} \geq 30 \\
\mathrm{x}_{2}+x_{3}+2 x_{4} \leq 10
\end{gathered}
$$

$\mathrm{x}_{1,}, x_{2}, x_{4} \geq 0, x_{3}$ is unrestricted.
f) Consider the following linear programming problem:

$$
\begin{aligned}
& \operatorname{Max} \mathrm{x}_{0}=3 x_{1}+2 x_{2}+5 x_{3} \\
& \text { Subject to } \mathrm{x}_{1}+2 \mathrm{x}_{2}+x_{3} \leq 430 \\
& 3 \mathrm{x}_{1}+2 x_{3} \leq 460 \\
& \mathrm{x}_{1}+4 x_{3} \leq 420 \\
& \quad \mathrm{x}_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{aligned}
$$

Obtain the standard form of this programme and find the optimum solution.

Question 2 (20 marks)

a) State the three main properties of a general linear programming problem.
b) Consider the following linear programming problem:

Minimize $\mathrm{x}_{0}=20 x_{1}+30 x_{2}+50 x_{3}+40 x_{4}$
Subject to

$$
\begin{aligned}
& 4 \mathrm{x}_{1}+6 x_{2}+x_{3}+2 x_{4} \geq 12 \\
& 2 x_{1}+x_{2}+6 x_{3}+5 x_{4} \geq 14 \\
& \mathrm{x}_{1}+2 x_{2}+4 x_{3}+3 x_{4} \geq 8 \\
& \text { xi } \geq 0, i=1,2,3,4
\end{aligned}
$$

i) Write the complete dual of the above primal problem.
ii) Use simplex method to find the optimal solution of the primal problem by solving the dual in (i) above.

Question 3 (20 marks)

a) Given the linear program

$$
\begin{array}{cc}
\text { Minimize } \mathrm{z} & =4 \mathrm{x}_{1}+x_{2} \\
& 3 \mathrm{x}_{1}+x_{2}=3 \\
& 4 \mathrm{x}_{1}+3 x_{2} \geq 6 \\
& \mathrm{x}_{1}+2 x_{2} \leq 4 \\
& \mathrm{x}_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

Apply the M-technique to solve the above linear programme.
b) Use graphical method to solve the following linear program.

$$
\begin{align*}
& \text { Maximize } \mathrm{z}=5 \mathrm{x}_{1}+4 x_{2} \\
& 6 \mathrm{x}_{1}+4 x_{2} \leq 24 \\
& \mathrm{x}_{1}+4 x_{2} \leq 6 \\
&-\mathrm{x}_{1}+2 x_{2} \leq 1 \\
& x_{2} \leq 2 \\
& \mathrm{x}_{1} \geq 0, x \geq 0 \tag{6mks}
\end{align*}
$$

Question 4 (20 marks)

a) Define a degenerate solution.
b) What are the possible implications of degeneracy in a linear program?
c) Solve the following linear programme using simplex method.
$\operatorname{Max} \mathrm{Z}=\quad 3 \mathrm{x}_{1}+9 x_{2}$
Subject to $\quad \mathrm{x}_{1}+4 x_{2} \leq 8$

$$
\mathrm{x}_{1}+2 x_{2} \leq 4
$$

$$
\mathrm{x}_{1} \geq 0, x_{2} \geq 0
$$

