## KENYA METHODIST UNIVERSITY <br> END OF FIRST TRIMESTER 2007 EXAMINATIONS

FACULTY
DEPARTMENT : MATHEMATICS AND COMPUTER SCIENCE
COURSE CODE : MATH 412
COURSE TITLE : ALGEBRAIC STRUCTURES
TIME : 2 HRS

## Instructions:

- Answer question 1 and any other 2 questions.


## Question 1 (30 marks)

a) Consider the set N of positive integers, and let * denote the operation of least common multiple (LCM) on N .
i) Find $4 * 6,3 * 5,9 * 18$ and $1 * 6$.
(2 mks)
ii) Is ( $\mathrm{N}, *$ ) a semigroup? Is it commutative?
(2 mks)
iii) Find the identity of element of* (2 mks)
iv) Which elements in N , if any, have inverses and what are they?
(2 mks)
b) Let H be a finite subgroup of a group G . Show that H and any coset Ha have the same number of elements.
c) In an integral domain $D$, show that if $a b=a c$ with $a \neq 0$ then $\mathrm{b}=\mathrm{c}$.
d) Suppose $f(t)=t^{3}-2 t^{2}-6 t-3$. Find the roots of $f(t)$ assuming $f(t)$ has an integer root. $(5 \mathrm{mks})$
e) Prove that in a ring R:
i) $\quad \mathrm{a} .0=0$
( 2 mks )
ii) $\quad a(a-b)=(-a) b$
( 2 mks )
iii) $\quad(-1) \mathrm{a}=-\mathrm{a}$ (when R has an identity element 1 )
( 3 mks )

Question 2 (20 marks)
a) Consider the group $G=\{1,2,3,4,5,6\}$ under multiplication modulo 7 .
i) Find the multiplication table of G.
(3 mks)
ii) Find $2^{-1}, 3^{-1}, 6^{-1}$.
(3 mks)
iii) Find the orders and subgroups generated by 2 and 3 .
(3 mks)
iv) Is G cyclic?
(1 mk)
b) Prove:
i) A finite integral domain $D$ is a field.
(4 mks)
ii) $\quad Z_{p}$ is a field where $p$ is a prime number.
( 3 mks )
iii) (Fermat) if p is prime, then $\mathrm{a}^{\mathrm{p}} \equiv a(\bmod \mathrm{p})$ for any integer a .
(3 mks)

## Question 3 (20 marks)

a) Consider the ring $\mathrm{Z}_{10}=\{0,1,2, \ldots, 9\}$ of integers module 10 .
i) Find the units of $Z_{10}$
ii) Find $-3,-8$, and $3^{-1}$
( 4 mks )
iii) Let $f(x)=2 x^{2}+4 x+4$. Find the roots of $f(x)$ over $Z_{10}$
(4 mks)
b) Prove the Unique Factorization Theorem which says that if $f$ is a nonzero polynomial in $K(t)$, then f can be written uniquely (except for order) as a product $\mathrm{f}=\mathrm{kp}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{n}}$ where $\mathrm{k} \in \mathrm{K}$ and the p 's are monic irreducible polynomials in $\mathrm{K}(\mathrm{t})$.
( 10 mks )

## Question 4 (20 marks)

a) Let G be a group and let A be a nonempty set.
i) Define the meaning of the statement "G acts on A".
(3 mks)
ii) Define the stabilizer Ha of an element $\mathrm{a} \in \mathrm{A}$.
(3 mks)
iii) Show that Ha is a subgroup of G .
b) i) Suppose $f(t)=2 t^{3}-3 t^{2}-6 t-2$. Find all the roots of $f(t)$ knowing that $f(t)$ has a rational root.
ii) Let $K=Z_{8}$. Find all roots of $f(t)=t^{2}+6 t$ ( 4 mks )

## Question 5 ( 20 marks)

a) Suppose f: $G \rightarrow G^{\prime}$ is a group homomorphism. Prove:
i) $\quad \mathrm{f}(\mathrm{e})=e^{\prime}$
ii) $\quad \mathrm{f}\left(\mathrm{a}^{-1}\right)=\mathrm{f}(\mathrm{a})^{-1}$
b) Consider the set Q of rational numbers, and let * be the operation on Q defined by:

$$
a^{*} b=a+b-a b
$$

i) Find $3 * 4,2 *(-5)$ and $7 * 1 / 2$
ii) Is ( $\mathrm{Q}, *$ ) a semigroup? Is it commutative? ( 3 mks ?
iii) Find the identity element for *. (2 mks)
iv) Do any of the elements in Q have an inverse? What is it? ( 3 mks ?

