KENYA METHODIST UNIVERSITY END OF FIRST TRIMESTER 2007 EXAMINATIONS

FACULTY	:	SCIENCES
DEPARTMENT	:	MATHEMATICS AND COMPUTER SCIENCE
COURSE CODE	:	MATH 412
COURSE TITLE	:	ALGEBRAIC STRUCTURES
TIME	:	2 HRS

Instructions:

b)

c) d) e)

b)

• Answer question 1 and any other 2 questions.

Question 1 (30 marks)

a) Consider the set N of positive integers, and let * denote the operation of least common multiple (LCM) on N.

	$(2 \operatorname{mal}_{2})$
ii) Is (N,*) a semigroup? Is it commutative?	(2 mks)
iii) Find the identity of element of*	(2 mks)
iv) Which elements in N, if any, have inverses and what are they?	(2 mks)
Let H be a finite subgroup of a group G. Show that H and any coset Ha have th	e same number
of elements.	(5 mks)
In an integral domain D, show that if $ab=ac$ with $a\neq 0$ then $b=c$.	(5 mks)
Suppose $f(t) = t^3 - 2t^2 - 6t - 3$. Find the roots of $f(t)$ assuming $f(t)$ has an integer	er root.(5 mks)
Prove that in a ring R:	
i) $a.0 = 0$	(2 mks)
ii) $a(a-b) = (-a)b$	(2 mks)
iii) $(-1)a = -a$ (when R has an identity element 1)	(3 mks)

Question 2 (20 marks)

a)	Consider the group $G =$	{1,2,3,4,5,6	} under multiplication modulo 7.
----	--------------------------	--------------	----------------------------------

i)	Find the multiplication table of G.	(3 mks)
ii)	Find 2^{-1} , 3^{-1} , 6^{-1} .	(3 mks)
iii)	Find the orders and subgroups generated by 2 and 3.	(3 mks)
iv)	Is G cyclic?	(1 mk)
Prove:		
i)	A finite integral domain D is a field	(1 mks)

1)	A mine megrar domain D is a neid.	(+ 111K5)
ii)	Z_p is a field where p is a prime number.	(3 mks)

iii) (Fermat) if p is prime, then $a^p \equiv a \pmod{p}$ for any integer a. (3 mks)

Question 3 (20 marks)

a) Consider the ring $Z_{10} = \{0, 1, 2, \dots, 9\}$ of integers module 10.

i)	Find the units of Z_{10}	(2 mks)
----	----------------------------	---------

- ii) Find -3, -8, and 3^{-1} (4 mks)
- iii) Let $f(x) = 2x^2 + 4x + 4$. Find the roots of f(x) over Z_{10} (4 mks)
- b) Prove the Unique Factorization Theorem which says that if f is a nonzero polynomial in K(t), then f can be written uniquely (except for order) as a product $f=kp_1p_2...p_n$ where $k \in K$ and the p's are monic irreducible polynomials in K(t). (10 mks)

Question 4 (20 marks)

a) Let G be a group and let A be a nonempty set.

i)	Define the meaning of the statement "G acts on A".	(3 mks)
ii)	Define the stabilizer Ha of an element $a \in A$.	(3 mks)
:::)	Show that Hair a subgroup of C	(1 m lrg)

iii) Show that Ha is a subgroup of G. (4 mks)

b)	i)	Suppose $f(t) = 2t^3 - 3t^2 - 6t - 2$. Find all the roots of $f(t)$ knowing that $f(t)$	has a
		rational root.	(6 mks)
		2	

ii) Let $K = Z_8$. Find all roots of $f(t) = t^2 + 6t$ (4 mks)

Question 5 (20 marks)

a)

Suppo	ose f: $G \rightarrow G'$ is a group homomorphism. Prove:	
i)	f(e) = e'	(5 mks)
ii)	$f(a^{-1}) = f(a)^{-1}$	(5 mks)

b) Consider the set Q of rational numbers, and let * be the operation on Q defined by:

 $a^*b = a{+}b - ab$

i)	Find $3*4$, $2*(-5)$ and $7*\frac{1}{2}$	(2 mks)
ii)	Is (Q,*) a semigroup? Is it commutative?	(3 mks)
iii)	Find the identity element for *.	(2 mks)
iv)	Do any of the elements in Q have an inverse? What is it?	(3 mks)