KENYA METHODIST UNIVERSITY
 END OF FIRST TRIMESTER 2007 EXAMINATIONS

FACULTY : SCIENCES
DEPARTMENT : MATHEMATICS AND COMPUTER SCIENCE
COURSE CODE : PHYS 100
COURSE TITLE : PHYSICS 1
TIME : 3 HRS

Instructions:

- Answer any three questions
- You may use the following information where applicable.
i) Acceleration due to gravity $\mathrm{g}=9.80_{2} 0 \mathrm{Ms}_{-2}^{-2}$
ii) Gravitational constant $\mathrm{G}=6.67 \times 10-{ }^{11} \mathrm{NM} \mathrm{Kg}$
iii) Speed of light in vacuum $\mathrm{C}=3.0 \times 10^{8} \mathrm{MS}^{-1}$
iv) Avogardo's Number NA $=6.022 \times 10^{23}$ molecules Mol^{-1}
v) Universal gas constant $\mathrm{R}=8.314 \mathrm{~J} \mathrm{Mol}^{-1} \mathrm{~K}$
vi) 1 calorie $=4.186$ Joules
vii) Beflzmann's constant $\mathrm{K}=R / N A=1.38 \mathrm{X} 10-^{23} \mathrm{JK}^{-1}$
viii) Water density $\delta=1 \times 10^{3} \mathrm{Kg} \mathrm{M}^{-3}$

Question 1

a) i) Differentiate between a vector quantity and a scalar quantity giving two examples of each.
(2 mks)
ii) By adding two vectors $\stackrel{\rightharpoonup}{a}$ and $\stackrel{\rightharpoonup}{b}$ and using diagrams show that the two vectors commutise

$$
\begin{equation*}
\stackrel{\rho}{a}+\tilde{b}=\tilde{b}+\stackrel{\rho}{a} \tag{3mks}
\end{equation*}
$$

b) i) What is projectile motion?
ii) Derive the equations of motion for maximum height and time of flight for a projectile motion.
Maximum height. \qquad
Time of flight \qquad
iii) The equation of path of a projectile (trajectory is given as

$$
\mathrm{Y}=\mathrm{x} \tan \theta-\frac{g x^{2}}{2 V_{0}^{2} \cos \theta}
$$

A plane is flying at a constant elevation of 1200 m with a speed of $430 \mathrm{Kmh}^{-1}$ towards a point directly over a person struggling in water. AT what angle of flight Q should the pilot release a rescue capsule if it is to strike (very close) to the persons in the water? (A diagram will be important)
(4 mks)
c) i) Give a condition whereby work is done.
ii) How much work is done by lifting a weight of 2500 J through a distance of 2.0 M (Assume weight is lifted at constant sped).
iii) Show that the work done by a spring is given as

$$
\mathrm{W}=1 / 2 \mathrm{~K} \mathrm{X}_{i}^{2}-1 / 2 \mathrm{KX} X_{f}^{2}
$$

Question 2

a) i) State the three laws of linear momentum.
ii) Show that $\mathrm{F}=\mathrm{KMa}$
b) i) Show that the period of a simple pendulum which exhibits simple harmonic motion

$$
\begin{equation*}
\text { is given as: } \mathrm{T}=2 \Pi \sqrt{\frac{l}{q}} \tag{7mks}
\end{equation*}
$$

ii) Calculate the period of oscillation of a simple pendulum with a length of $50 \mathrm{~cm} . \quad(5 \mathrm{mks})$

Question 3

a) i) Differentiate between hydrostatics and hydrodynamics.
ii) Give the two assumptions made in fluids in motion (hydrodynamics)
iii) Differentiate between streamline flow and turbulent flow.
iv) Derive the equation of continuity $\mathrm{V}=\mathrm{Av}$
where $\mathrm{V}=$ Volume of fluid
$A=$ crossectional area of pipe
$\mathrm{v}=$ Velocity of fluid
v) A water hose 2 cm in diameter is used to fill a 20 litre bucket. If it takes 1 min to fill the bucket, what is the speed u at which the water leaves the hose? (Note that 1 litre $=10^{3} \mathrm{~cm}^{3}$)
vi) Derive the Bernoulli's equation.
vii) State any two applications of Bernoulli's equation.

Question 4

a) Outline the four assumptions of the molecular model of an ideal gas.
b) A cylinder contains 3 moles of Helium gas at Q temperature of 300 K .
i) How much heat must be transferred to the gas to increase its temperature to 500 K if the gas is heated at constant volume?
ii) Show that the work done in an isothermal expansion of an ideal gas is given by

$$
\begin{equation*}
\mathrm{W}=\mathrm{nRT} \quad \text { in }\left(\frac{v_{f}}{r_{i}}\right) \tag{2mks}
\end{equation*}
$$

iii) Calculate the work done by 1 mole of an ideal gas that is kept at $0^{\circ} \mathrm{C}$ in an expansion from 3 litres to 10 litres.

Question 5

a) i) State and explain the three Keplers empirical laws applied to the solar systems. (6 mks)
ii) Calculate the mass of the sun using the fact that that the period of the earth is $3.156 \times 10^{7} \mathrm{~S}$ and the distance from the sun is $1.496 \times 10^{1} \mathrm{M}$.
b) i) Differentiate between heat capacity and specific heat capacity and give the SI units of each one of them.
ii) A 50 g chunk of metal is heated to $200^{\circ} \mathrm{C}$ and then dropped into a beaker containing 400 g of water initially at $20^{\circ} \mathrm{C}$. If final equilibrium temperature of the mixed system is $22.4^{\circ} \mathrm{C}$, find the specific heat capacity of the metal.

