KENYA METHODIST UNIVERSITY
 END OF FIRST TRIMESTER 2007 EXAMINATIONS

FACULTY	$:$	SCIENCES
DEPARTMENT	$:$	MATHEMATICS AND COMPUTER SCIENCE
COURSE CODE	$:$	PHYS 200
COURSE TITLE	$:$	PHYSICS 1I
TIME	$:$	3 HRS

Instructions:

- Answer any three questions
- You may use the following information where applicable.

The following constants may be useful.
i) Permitivity of free space $\sum=8.85 \times 10^{4} \mathrm{TM}$
ii) Permeability of free space $\mathrm{M}=40 \times 10^{-7} \mathrm{TMA}^{+}$
iii) BIOT - Savart constant $\mathrm{RM}=10^{-7} \mathrm{TMA}^{-1}$
iv) Coulomb force constant $\mathrm{Ka}=8.99 \times 10^{9}$ al M ${ }^{2} \mathrm{C}^{-2}$
v) \quad Resistivity of aluminium $=1.824 \times 10^{-8} \Omega \mathrm{~m}$
vi) \quad Resistivity of Nichrome $=1.00 \times 10-8 \Omega \mathrm{~m}$
vii) Refractive index of air $=1.00$
viii) Refractive index of water $=1.33$

Question 1

a) What is current density?
b) In a plasma having a circular cross-section with radius 5 cm , the current density varies with the radial distance form the axis of the direction of current according to the relationship $J=100 \mathrm{rk} \mathrm{A} / \mathrm{m}^{2}$.
Determine the total current of the plasma.
c) State Faraday's Law of electromagnetic induction and give its representation in equation form.
d) The current in a coil of wire is charged uniformly according to the relationship $\mathrm{I}=0.10 \mathrm{tA}$, where t is the time in seconds. An induced e.m.f of 0.13 MV is in addition to any Pd across the leads that is due to the resistance of a coil. What is the self inductance of the coil?
e) A coil is wrapped with 200 turns of wire on the perimeter of a square frame of sides 18 cm . Each turn has the same area equal to that to the frame and the total resistance of the coil is 200Ω. A uniform magnetic field is turned on perpendicular to the plane of the coil. If the field changes linearly from 0 to $0.5 \mathrm{wb} / \mathrm{m}^{2}$ in a time of 0.08 s , find the magnitude of the induced e.m.f in the coil while the field is changing.

Question 2

a) State Gauss law and give its mathematical statement.
(3 mks)
b) Starting with Gauss's law, calculate the electric field due to an isolated point charge q and show that coulomb's law follows from this result. The following diagram is useful.

c) A point charge of 5 uC is placed at the centre of a spherical shell of radius 15 cm . Calculate the total electric flu through the following:
i) The entire surface of the shell i.e. at $\mathrm{r}=15 \mathrm{~cm}$
ii) Any hemispherical surface of the shell.
iii) Do the results depend on the radius? Explain.

Question 3

a) i) Write down the mirror equation of spherical mirrors.
ii) An object of height 2.5 cm is placed infront of a concave mirror whose radius of curvature is 20 cm . Determine:
a) The position of the mirror.
b) The magnification and size of the image.
b) Derive the Len's makers formula shown below for a biconvex lens.

$$
\begin{align*}
& \quad \frac{1}{f}=(n-1)\left(\frac{1}{R}-\frac{1}{R_{2}}\right) \\
& \text { Where } \frac{1}{s}+\frac{1}{s^{1}}=\frac{1}{f} \tag{13mks}
\end{align*}
$$

Question 4

a) Distinguish between inductive reactance and capacitive reactance in A.C circuits.
b) A series RCL circuit consists of a resistance of 250Ω, an inductor of 0.1 H and a condenser (capacitor) of 50 mf . The applied voltage has a frequency of 600 Hz . Does the current lead or lag behind the applied voltage and by what angle?
c) i) Give a statement of Biot-Savarts law.
ii) Two parallel wires carry currents of 10 A and are separated by 1 mm distance. What is the force on a 2 m long portion of the wires?
iii) Give three differences between electric and magnetic forces.

