KENYA METHODIST UNIVERSITY

END OF FIRST TRIMESTER 2008 EXAMINATIONS

FACULTY : SCIENCE AND SOCIAL STUDIES
 DEPARTMENT : COMPUTER AND INFORMATION SCIENCE
 COURSE CODE : MATH 110
 COURSE TITLE : LINEAR ALGEBRA I
 TIME
 2 HOURS

Instructions:

- Answer question ONE (compulsory) and any other TWO questions.

Question 1 (30 marks)

a) (i) Solve the system

$$
\begin{gather*}
x_{1}+2 x_{2}=5 \\
-x_{1}+x_{2}=1 \tag{3mks}\\
x_{1}+x_{2}=6
\end{gather*}
$$

(ii) Using the augmented matrix approach, find

$$
A^{-1} \text { if } A\left[\begin{array}{cc}
1 & 2 \tag{3mks}\\
-1 & 3
\end{array}\right]
$$

b) (i) Solve the system $A \underline{x}=\underline{b}$ where

$$
\mathrm{A}=\left[\begin{array}{ccc}
1 & -2 & 3 \\
3 & 0 & 1 \\
2 & 2 & 1
\end{array}\right], \underline{b}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
$$

(ii) show that if the vectors $\underline{v}_{1}, \underline{v}_{2}$ and \underline{v}_{3} are independent then the vectors $\underline{u}_{1}=2 \underline{v}_{1}, \underline{u}_{2}=\underline{v}_{1}+\underline{v}_{2}$ and $\underline{u}_{3}=\underline{v}_{3}-\underline{v}_{1}$ are also independent.
c) Let V be the subset of \mathfrak{R}^{3} consisting of all vectors $\underline{v}=\left(v_{1}, v_{2}, v_{3}\right)$ such that $v_{3}=2 v_{1}$. Determine whether V is a subspace of \mathfrak{R}^{3}.
d) (i) Define an inner product of a vector space \mathfrak{R}^{m}.
(ii) Determine whether the vectors $(1,0,0),(2,2,4),(-1,0,1)$ span \mathfrak{R}^{3}.
e) (i) Find a basis for \mathfrak{R}^{5} that contains the vectors $\underline{v}_{1}=(1,1,0,0,0), \underline{v}_{2}=(1,1,1,1,0)$.
(ii) If V is a subspace spanned by $\underline{v}_{1}, \underline{v}_{2}, \underline{v_{3}}$ find an orthornomal basis for v . (3 mks)

Question 2 (20 mks)

a) Consider the transformation $T: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{3}$ defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, 3 x_{2}, 2 x_{1}-x_{2}\right)$. Prove that T is a linear transformation. (10 mks)
b) Consider a linear transformation $T: \mathfrak{R}^{3} \rightarrow \mathfrak{R}^{2}$ defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}, x_{2}+x_{3}\right)$.
Find the matrix of T with respect to the basis $\underline{v}_{1}(2,0,1), \underline{v}_{2}=(0,2,2)$ and $\underline{v}_{3}=(0,2,3)$ of \mathfrak{R}^{3} and the basis $\underline{w}_{1}=(1,2)$ and $\underline{w}_{2}=(0,1)$ of \mathfrak{R}^{2}

Question 3 (20 marks)

a) Let V be a subspace of \mathfrak{R}^{4} consisting of vectors $\underline{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ such that $x_{1}+x_{2}-x_{3}+x_{4}=0$. Find a basis for V that contains the vector $(0,0,1,1)$. What is $\operatorname{dim} \mathrm{V}$?
b) Show that if A is an nx n matrix, the subset \Re^{n} consisting of all solution vectors of the homogeneous system $\mathrm{A} \underline{\mathrm{x}}=\underline{0}$ is a subspace of \mathfrak{R}^{n} called the nullspace of A .
(10 mks)

Question 4 (20 marks)

a) (i) Let $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 1 \\ 2 & 1\end{array}\right], \underline{\delta}_{1}=\left[\begin{array}{c}3 \\ -1 \\ 3\end{array}\right]$ and $\underline{\boldsymbol{\delta}}_{2}=\left[\begin{array}{l}3 \\ 1 \\ 8\end{array}\right]$.

Determine whether $\underline{\delta}_{1}$ and $\underline{\delta}_{2}$ are in the column space of A.
(ii) Prove that if $\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{t}$ are non-zero orthogonal vectors in a vectors space \Re^{m}, then they are linearly independent.
b) Let $\underline{u}=(1,2,5)$ and $\underline{v}=(5,1,1)$ find the distance between \underline{u} and \underline{v}. Express $\underline{\mathrm{w}}=(-7,4,13)$ as a linear combination of $\underline{\mathrm{u}}$ and $\underline{\mathrm{v}}$.

Question 5 (20 marks)

a) Show that
(i) The vectors $\underline{x}_{1}=(1,1,1), \underline{x}_{2}=(1,1,0)$ and $\underline{x}_{3}=(1,0,0)$ span \mathfrak{R}^{3}
(ii) The polynomials $f_{1}(t)=t^{2}+2 t-1, f_{2}(t)=t+1, f_{3}(t)=1$ span the space of polynomials of degree ≤ 2.
b) (i) Write the vector $\underline{z}=(-2,1,3)$ as a linear combination of $\underline{x}_{1}=(1,1,1), \underline{x}_{2}=(1,1,0)$ and $\underline{x}_{3}=(1,0,0)$.
(ii) Prove that a linear transformation is one-to-one if and only if its kernel is trivial that is $\operatorname{ker}(T)=\{0\}$.

