KENYA METHODIST UNIVERSITY 1ST TRIMESTER 2008, EXAMINATION

FACULTY	:	SCIENCE AND SOCIAL STUDIES
DEPARTMENT	:	COMPUTER INFORMATION SCIENCE
COURSE CODE	:	COMP 340/MISC 332
COURSE TITLE	:	DATABASE MANAGEMENT SYSTEMS
TIME	:	2 HOURS

Instruction: Answer question one and answer two other questions.

QUESTION ONE (30 MARKS)

- 1. SQL is a data sub language, explain the six basic SQL statements used (6Mks)
- 2. Write SQL statements that could create the following data structure

StudentID*	Name	Advisor	Dept	Faculty	Year	GPA
Mac-1-01-07	Peter	Juma	CIS	Sciences	2007	2.93
Bus-0-07-03	Jane	Abdih	BBA	Business	2008	3.01
Mac-0-02-08	Mary	Henry	CIS	Sciences	2008	3.32
Bus-1-01-06	Andrew	Abdih	BBA	Business	2007	2.79
Mac-1-03-07	John	Juma	CIS	Sciences	2008	3.42

(10Mks)

- 3. Explain domain and integrity constraints in structured query language (5Mks)
- 4. Briefly explain the properties of transaction that a DBMS must maintain (4Mks)
- 5. The following query has been issued against a database

 $\pi_{\text{Course#, CName}}$ ($\sigma_{\text{course.course#} = \text{adopt.course#} \text{ AND text.bookID} = \text{adopt.bookID} \text{ AND text.publisher} = 'Focus books' \text{ AND dept} = 'Computer Science'}$ (Course X Adopt X Text))

Draw a corresponding query tree for this query, explaining the steps you have gone through (5Mks)

QUESTION TWO (15 MARKS)

1. Making a data structured relational is achieved by the process of normalization. Normalize the following data structure to its 3rd normal form. (6Mks)

Purchases
Customer_name
Customer_address
Customer_country_code
Customer_phone
Product_1_name
Product_1_quantity
Product_2_name
Product_2_quantity
Product_3_name
Product_3_quantity
Total_cost

2. Explain the three levels and mappings in relation to the database architecture (9Mks)

QUESTION THREE (15 MARKS)

- 1. Using a diagram, discuss the database analysis life cycle (12Mks)
- 2. Showing with diagrams, at least three categories of cardinality of the relationships (3Mks)

QUESTION FOUR (15 MARKS)

 A requirement that a department sponsors project(s) that are monitored by employees who manage the department for a given period of time. Using the following schema, draw an ER model

Employee(<u>SSN</u>,name,lot) Project(<u>pID</u>,start_on,pbudget) Department(<u>dID</u>, dname,budget) (10Mks)

2. Define on data model and what is it comprised of, and give examples of data models

5Mks)

QUESTION FIVE (MARKS)

- 1. Describe the three main relational algebra operations implemented in DBMS (9Mks)
- 2. Write the relational algebra of the following SQL statement:

SELECT	name,DoB,title	
FROM	movieStar,StarsIn	
WHERE	name=starName AND year=1996 AND gender='F';	(6Mks)