KENYA METHODIST UNIVERSITY
 END OF TRIMESTER I 2008 EXAMINATION

Faculty : Science and Social Studies
 Department : Computer and Information Science
 Course Code : COMP 422
 Course Title : Automata and Formal Languages
 Time : 2 Hrs

INSTRUCTIONS: Answer Question ONE (Compulsory) and ANY OTHER TWO questions:

Question One (30 Marks):

(a.) Define:
i. Regular expression
ii. Decision problem (2 marks)
(b.) For a set A, define:
i. The powers A^{n} of A
ii. The asterate A^{*} of A
(c.) Define the equivalence relation \approx and equivalence class for a state $\mathrm{p} \in \mathrm{Q}$ in a DFA
(d.) Give the set of strings matching each of the following patterns
i. ϕ
ii. ε
(e.) Describe the start configuration and next configuration for a Turing machine M
(f.) Give a deterministic finite state automaton that accepts the regular set

$$
\left\{x \in\{a, b\}^{*} \mid x \text { contains an even number of } a ’ s\right\}
$$

(g.) Distinguish between a pushdown automata (PDA) and a finite state automata (FSA)
(h.) Consider two DFAs A and B that accept the sets $L(A)$ and $L(B)$ respectively. Describe acceptance for a DFA C that accepts the set $L(A) \cap L(B)$
(i.) Construct a non-deterministic finite state automaton, that accepts the set $\left\{x \in\{0,1\}^{*} \mid x\right.$ ends with the string 100$\}$
(j.) What is the meaning of the configuration ($\mathrm{q}, \mathrm{w}, \mathrm{X}$) for a PDA M ?

Question Two (20 Marks):

(a.) Briefly describe the halting problem
(b.) Define:
i. A monoid (1 mark)
ii. Prefix for a string x (2 marks)
iii. A pattern
(c.) Give an NFA, with four states, equivalent to the regular expression
$(01+011+0111)^{*}$
(4 marks)
(d.) List the equivalence classes of the collapsing relation \approx and construct a minimal DFA for the following DFA

	a	b
$\rightarrow 1$	1	4
2	3	7
3 F	4	2
4 F	3	5
5	4	6
6	6	3
7	2	4
8	3	1

Question Three (20 Marks):

(a.) For a pushdown automata M, describe:
i. Configuration
(2 marks)
ii. Acceptance
(b.) Consider the DFA:

Describe the set accepted by the automata
(c.) Consider the following two deterministic finite state automata:

	A	b
\rightarrow	1	2
2 F	2	1

	a	b
$\rightarrow 1$	2	3
2	3	1
3 F	1	2

use product construction to construct a DFA accepting the union of the two sets accepted
by these automata
(d.) Convert the following grammar into Chomsky normal form

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aSbb} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{bTaa}|\mathrm{~S}| \epsilon
\end{aligned}
$$

(e.) When is a turing machine said to be total?

Question Four (20 Marks):

(a.) Describe a deterministic one-tape turing machine and how it works.
(b.) Construct a DFA that accepts the same set as the following NFA:

(c.) Describe the Greibach normal form for a grammar G
(d.) Distinguish between L^{*} and L^{+}for a language L
(e.) Define:
i. State
ii. Transition
iii. Finite-state transition system
(f.) Give the regular expression equivalent to the following DFA

