KENYA METHODIST UNIVERSITY END OF TRIMESTER I 2008 EXAMINATION

Faculty	:	Science and Social Studies
Department	:	Computer and Information Science
Course Code	:	COMP 422
Course Title	:	Automata and Formal Languages
Time	:	2Hrs

INSTRUCTIONS: Answer Question ONE (Compulsory) and ANY OTHER TWO questions:

Question One (30 Marks):

Define:	
i. Regular expression	
ii. Decision problem	(2 marks)
For a set A, define:	
i. The powers A^n of A	
ii. The asterate A* of A	(3 marks)
Define the equivalence relation \approx and equivalence class for a state $p \in Q$ in a DFA	
	(3 marks)
Give the set of strings matching each of the following patterns	
i. φ	
ii. ε	(2 marks)
Describe the start configuration and next configuration for a Turing machine M	<i></i>
	(4 marks)
Give a deterministic finite state automaton that accepts the regular set	
$\{x \in \{a, b\}^* \mid x \text{ contains an even number of } a's\}$	(4 marks)
Distinguish between a nucledown supermeter (\mathbf{DDA}) and a finite state supermeter (\mathbf{ES}	A)
Distinguish between a pushdown automata (PDA) and a finite state automata (FS.	A)
	(2 marks)
Consider two DEAs A and B that accept the sets $I(A)$ and $I(B)$ respectively. Des	cribe
accentance for a DEA C that accents the set $I(A) \cap I(B)$	(3 marks)
acceptance for a DTA C that accepts the set L(A) (L(D)	(5 marks)
Construct a non-deterministic finite state automaton that accepts the set	
$x \in \{0, 1\}^* \mid x \text{ ends with the string } 100\}$	(4 marks)
	(1 1111113)
What is the meaning of the configuration (q,w,X) for a PDA M?	(3 marks)
	 Define: Regular expression Decision problem For a set A, define: The powers Aⁿ of A Define the equivalence relation ≈ and equivalence class for a state p∈ Q in a DFA Give the set of strings matching each of the following patterns \$\overline\$ Bescribe the start configuration and next configuration for a Turing machine M Give a deterministic finite state automaton that accepts the regular set {x∈ {a, b}* x contains an even number of a's} Distinguish between a pushdown automata (PDA) and a finite state automata (FS. Consider two DFAs A and B that accept the sets L(A) and L(B) respectively. Des acceptance for a DFA C that accepts the set L(A)∩L(B) Construct a non-deterministic finite state automaton, that accepts the set {x∈ {0,1}* x ends with the string 100} What is the meaning of the configuration (q,w,X) for a PDA M?

Question Two (20 Marks):

(a.)	Briefly describe the halting problem	(3 marks)
(b.)	Define:	
	i. A monoid	(1 mark)
	ii. Prefix for a string x	(2 marks)
	iii. A pattern	(2 marks)
(c.)	Give an NFA, with four states, equivalent to the regular expression	
	(01+011+0111)*	(4 marks)

(d.) List the equivalence classes of the collapsing relation ≈ and construct a minimal DFA for the following DFA

	а	b
→1	1	4
2	3	7
3F	4	2
4F	3	5
5	4	6
6	6	3
7	2	4
8	3	1

Question Three (20 Marks):

(a.) For a pushdown automata M, describe:

- i. Configuration
- ii. Acceptance
- (b.) Consider the DFA:

Consider the DFA: b = a b = a b = a b = a b = a b = a p = qDescribe the set accepted by the automata

(c.) Consider the following two deterministic finite state automata:

use product construction to construct a DFA accepting the union of the two sets accepted by these automata (4 marks)

- (d.) Convert the following grammar into Chomsky normal form $S \rightarrow aSbb | T$ $T \rightarrow bTaa | S | \in$ (5 marks)
- (e.) When is a turing machine said to be <u>total</u>? (2 marks)

(2 marks) (4 marks)

(8 marks)

(3 marks)

Question Four (20 Marks):

- (a.) Describe a deterministic one-tape turing machine and how it works. (4 marks)
- (b.) Construct a DFA that accepts the same set as the following NFA: (7 marks)

$$\begin{array}{c|c} - \bullet 1 & 1 & 2 \\ 2F & 2F & 1 \end{array}$$
 (2 marks)