KENYA METHODIST UNIVERSITY

END OF TRIMESTER I EXAMINATION, APRIL 2008

Faculty	:	Science and Social Studies
Department	:	Computer and Information Science
Course Code	:	COMP 431
Course Title	:	Digital Image Processing
Time	:	2 hours

Instructions : Answer question one and any other two questions

Question ONE - Compulsory

- a) Define the following terms as used in digital image processing:
 - i) Sampling
 - ii) Digital image
 - iii) Quantization
 - iv) Dithering
 - v) Noise

[10 marks]

[2 marks]

- b) Describe the image processing task of obtaining by automatic process, the postal codes from envelopes. [5 marks]
- c) Compute the discrete Fourier transform (forward fast Fourier transform) for the following sequence

- d) What does the function *im2uint8* in MATLAB do?
- e) Salt and pepper noise, also called impulse noise or shot noise can be caused by sharp, sudden disturbances in the image signal; its appearance is randomly scattered white and black pixels over the image. Briefly explain four (4) filtering methods used to remove this noise.
 [8 marks]

ANSWER ANY TWO QUESTIONS FROM THIS SECTION

Question TWO

- a) Image processing may be classified into three classes:
 - Transforms i)
 - ii) Neighborhood processing
 - Point operation iii)

Describe each of these classes in details.

b) With the aid of an example, illustrate the implementation of pixel multiplication using MATLAB commands. [8 marks]

Question THREE

- a) Describe how Floyd and Steinberg error diffusion algorithm works explaining why it is appropriate during quantization. [12 marks]
- b) Explain the MATLAB commands that are use to perform the following conversion tasks
 - i) Indexed image to grayscale image
 - RGB image to indexed image ii)
 - Indexed image to RGB image iii)
 - RGB image to grayscale image [8 marks] iv)

Question FOUR

- a) The one dimensional discrete Fourier transform (DFT) satisfies many useful and important properties. Discuss these properties. [16 marks]
- b) One effective algorithm used for DFT is the fast Fourier transform. Describe how it works.

[4 marks]

Question FIVE

a) Differentiate between lossless and lossy compression. [4 marks]

- b) Discuss the following:
 - i) Huffman Coding
 - ii) Huffman decoding
 - Run length encoding iii)
 - JPEG algorithm iv) [16 marks]

[12 marks]