KENYA METHODIST UNIVERSITY

END OF TRIMESTER EXAM APRIL 2008

FACULTY: SCIENCE AND SOCIAL STUDIES

DEPARTMENT: COMPUTER INFORMATION SCIENCE

COURSE CODE : MATH 310

COURSE TITLE : REAL ANALYSIS I MODE : SCHOOL BASED

Total Marks (60)

TIME: 2½ HOURS

Instructions

Answer all questions in SECTION A and ANY ONE question in SECTION B

Question 1 (30 Mks)

- 1. Define the following terms
 - a. Point of contact.
 - b. A set is utmost countable.

c. Cardinality of a set. (3 marks)

- 2. State the completeness axiom of real numbers R. (2 marks)
- 3. Show that every open neighbourhood is an open set. (5 marks)
- 4. Show that a subset of metric space (x,d) is open if and only if $A = A^{\circ}$.

(6 marks)

- 5. Let (X_n) be a monotonic sequence of real numbers. Prove that (X_n) converges if and only if it is bounded. (5 marks)
- 6. Let (X, ρ) be a metric space and $E \subseteq X$. Define the notions:
 - a. E is bounded.
 - b. A limit point of E.
 - c. Interior of E in the metric space (X,ρ) .
 - d. Neighbourhood of a point in the metric space (X,ρ) . (4 marks)
- 7. Show that every subset of E of X is open as well as closed in X. (5 marks)

Question 2 (30 marks)

1. Examine for extreme values the function

$$f(x,y) = e^{2x+3y}(8x^2 - 6xy + 3y^2)$$
 (15 marks)

2. Show that the interval (0,1) is equivalent to \mathbb{R} . That is, card $\mathbb{R} = \text{Card } (0,1)$ (5 marks)

3. Show that

$$\frac{x}{x+1} + \frac{x}{(x+1)(2x+1)} + \frac{x}{(2x+1)(3x+1)} + \dots + \dots$$
, is uniformly convergent in (k, ∞) when k is any positive integer. Show also that the series is not uniformly convergent near the point $x=0$.

(10 marks)

Question 3 (30 marks)

- 1. Show that $\sqrt{2}$, a root if $x^2 = 2$ is an irrational number. (4 marks)
- 2. Prove that for all $x,y \in \mathbb{R}$

$$||x| - |y|| \le |x - y|.$$
 (4 marks)

- 3. Consider (R, d), show that the function f: $R \rightarrow \mathbb{R}$ defined by f(x) = |x| is uniformly continuous. (5 marks)
- 4. Show that every convergent sequence is Cauchy. (5 marks)
 - 5. If $f(x) = \begin{cases} 1 + 2x & \text{for f rational} \\ 0 & \text{for f irrational} \end{cases}$

Calculate
$$\int_0^1 f(x) dx$$
 (6 marks)

6. If a and b are positive and p is any positive integer, show that as $n \rightarrow \infty$

$$\sum_{r=1}^{np} \frac{1}{na+r} \to \log\left(1+\frac{p}{a}\right) \tag{3 marks}$$

7. Show that a set is infinite if and only if it is equivalent to a proper subset of itself. (3 marks)

Question 4 (30 marks)

1. Let x be a nonempty set and defines a function d(x,y) for all x,y elements of x by $d(x,y) = \begin{cases} lifx \neq y \\ 0ifx = y \end{cases}$ Show that the function d is a metric. (8 marks)

- 2. Let $f: X \to Y$ be a continuous function and X be a compact metric space. Prove that the range of f, f(x) is also compact. (8 marks)
- 3. Let $E = (a,d] \cup \{c\}$ where c>b be a subset of the matrix space (R, d). find the derived set of E, E^d . (5 marks)

4. Show that the subset A in a metric space (x,d) is closed if and only if $A = \overline{A}$. (5 marks)

5. Explain the following terms of a metric space (x,d_1) and (y,d_2) :

a. Continuity of the function f.b. Limit of the function f.

(4 marks)