KENYA METHODIST UNIVERSITY

END OF FIRST TRIMESTER 2008 EXAMINATIONS

FACULTY: SCIENCE AND SOCIAL STUDIES

DEPARTMENT: COMPUTER AND INFORMATION SCIENCE

COURSE CODE : MATH 110

COURSE TITLE : LINEAR ALGEBRA I

TIME : 2 HOURS

Instructions:

• Answer question **ONE** (compulsory) and any other **TWO** questions.

Question 1 (30 marks)

a) (i) Solve the system

$$x_1 + 2x_2 = 5$$

 $-x_1 + x_2 = 1$ (3 mks)
 $x_1 + x_2 = 6$

(ii) Using the augmented matrix approach, find

$$A^{-1} \text{ if } A \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$
 (3 mks)

b) (i) Solve the system $A\underline{x} = \underline{b}$ where

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 3 & 0 & 1 \\ 2 & 2 & 1 \end{bmatrix}, \ \underline{b} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}. \tag{3 mks}$$

(ii) show that if the vectors $\underline{v}_1, \underline{v}_2$ and \underline{v}_3 are independent then the vectors

$$\underline{u}_1 = 2\underline{v}_1, \underline{u}_2 = \underline{v}_1 + \underline{v}_2$$
 and $\underline{u}_3 = \underline{v}_3 - \underline{v}_1$ are also independent. (3 mks)

- c) Let V be the subset of \Re^3 consisting of all vectors $\underline{v} = (v_1, v_2, v_3)$ such that $v_3 = 2v_1$. Determine whether V is a subspace of \Re^3 . (5 mks)
- d) (i) Define an inner product of a vector space \Re^m . (3 mks)
 - (ii) Determine whether the vectors (1,0,0), (2,2,4), (-1,0,1) span \Re^3 . (3 mks)
- e) (i) Find a basis for \Re^5 that contains the vectors $\underline{v}_1 = (1,1,0,0,0)$, $\underline{v}_2 = (1,1,1,1,0)$. (4 mks)
 - (ii) If V is a subspace spanned by $\underline{v}_1, \underline{v}_2, v_3$ find an orthornomal basis for v. (3 mks)

Question 2 (20 mks)

- a) Consider the transformation $T: \Re^2 \to \Re^3$ defined by $T(x_1, x_2) = (x_1 + x_2, 3x_2, 2x_1 x_2)$. Prove that T is a linear transformation. (10 mks)
- b) Consider a linear transformation $T: \Re^3 \to \Re^2$ defined by $T(x_1, x_2, x_3) = (x_1 x_2, x_2 + x_3)$. Find the matrix of T with respect to the basis $\underline{v}_1(2,0,1), \underline{v}_2 = (0,2,2)$ and $\underline{v}_3 = (0,2,3)$ of \Re^3 and the basis $\underline{w}_1 = (1,2)$ and $\underline{w}_2 = (0,1)$ of \Re^2 (10 mks)

Question 3 (20 marks)

- a) Let V be a subspace of \Re^4 consisting of vectors $\underline{x} = (x_1, x_2, x_3, x_4)$ such that $x_1 + x_2 x_3 + x_4 = 0$. Find a basis for V that contains the vector (0,0,1,1). What is dim V?
- b) Show that if A is an n x n matrix, the subset \Re^n consisting of all solution vectors of the homogeneous system $A\underline{x} = \underline{0}$ is a subspace of \Re^n called the nullspace of A. (10 mks)

Question 4 (20 marks)

a) (i) Let
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 2 & 1 \end{bmatrix}$$
, $\underline{\mathcal{S}}_1 = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$ and $\underline{\mathcal{S}}_2 = \begin{bmatrix} 3 \\ 1 \\ 8 \end{bmatrix}$.

Determine whether $\underline{\delta}_1$ and $\underline{\delta}_2$ are in the column space of A. (7 mks)

- (ii) Prove that if $\underline{v}_1, \underline{v}_2, ..., \underline{v}_t$ are non-zero orthogonal vectors in a vectors space \Re^m , then they are linearly independent. (6 mks)
- b) Let $\underline{u} = (1,2,5)$ and $\underline{v} = (5,1,1)$ find the distance between \underline{u} and \underline{v} . Express $\underline{w} = (-7, 4, 13)$ as a linear combination of \underline{u} and \underline{v} . (7 mks)

Question 5 (20 marks)

a) Show that

(i) The vectors
$$\underline{x}_1 = (1,1,1), \underline{x}_2 = (1,1,0)$$
 and $\underline{x}_3 = (1,0,0)$ span \Re^3 (5 mks)

- (ii) The polynomials $f_1(t) = t^2 + 2t 1$, $f_2(t) = t + 1$, $f_3(t) = 1$ span the space of polynomials of degree ≤ 2 . (5 mks)
- b) (i) Write the vector $\underline{z} = (-2,1,3)$ as a linear combination of $\underline{x}_1 = (1,1,1), \ \underline{x}_2 = (1,1,0) \ and \ \underline{x}_3 = (1,0,0).$ (5 mks)

2

(ii) Prove that a linear transformation is one-to-one if and only if its kernel is trivial that is $\ker(T) = \{0\}$. (5 mks)