KENYA METHODIST UNIVERSITY

END OF FIRST TRIMESTER 2008 EXAMINATIONS <u>SCHOOL BASED</u>

FACULTY	:	SCIENCE AND SOCIAL STUDIES
DEPARTMENT	:	COMPUTER AND INFORMATION SCIENCE
COURSE CODE	:	MATH 134
COURSE TITLE	:	INFERENTIAL STATISTICS
TIME	:	2 HOURS

Instructions:

• Answer question **ONE** (compulsory) and any other **TWO** questions.

Question 1

a)	Explai (i) Sta (ii)Typ (iii) Sa (iv) P-	in the fo tistic. pe I erro ampling value.	ollowin or. g distrib	g terms oution.	as used	l in stati	stics.				(8 mks)
b)	The fo	ollowin	g sampl	e of IO	measur	ements	of stud	ents sel	ected fr	om a no	pulation that is
0)	norma	llv dist	ributed	v or ry	measu	ements	01 5000	01105 501		om a pe	paradion that is
	91	80	99	110	95	106	78	121	106	100	
	97	82	100	83	115	104	114	118	96	101	
	79	101	79	130	94	101					
Calculate											
(i) Standard error. (3 mks)									(3 mks)		
	(ii) 96	% conf	idence	interval	for the	popula	tion me	an.			(5 mks)
c) The marks obtained by students in form four mathematics examination are approximate normally distributed, with mean 68% and standard deviation 3%. If a random sample of									re approximately ndom sample of ten		
	studen	its is se	lected,	calculat	e the pr	obabilit	ty that t	he mear	ı mark,	x is	

 (i) More that 69%
 (3 mks)

 (ii) Between 67% and 69%
 (3 mks)

d) Jade believes that there is no difference in proportion of degrees for both male and female graduates. A random sample of 200 universities degrees earned in 2005 gave the following breakdown.

Degree				
Gender	Bachelor	Master	Ph.D	
Males	100	30	12	
Females	40	10	8	
Test whether	(8 mks)			

Question 2

a)	Expla	Explain four differences between correlation and regression analysis.				(8 mks)							
b)	The c	lata belo ase in m	ow give arks ex	s the va pressed	lues for l as a pe	marks rcentag	scored ge of adr	by stude nission	ents on marks (admissi y).	on (x) a	nd the	
	Х	112	111	107	119	92	80	81	84	118	106	103	94
	у	63	66	72	52	75	118	120	114	42	72	90	91
y 63 66 72 52 75 118 120 114 42 72 9 (i) Fit the least squares regression line, $y = a+bx$ to the data. (6 mks) (ii) Test whether x contributes information for the prediction of y using the fitted line									ts) l line at				

Question 3

A sociologist studying Nairobi City ethnic groups wants to determine if there is a difference in income for immigrants from four different countries during their first year in the city. She obtained the data from a random sample of immigrants from these countries (incomes in thousands of dollars).

Country 1	12.7	9.2	10.9	8.9	16.4
Country 2	8.3	17.2	19.1	10.3	
Country 3	20.3	16.6	22.7	25.2	19.9
Country 4	17.2	8.8	14.7	21.3	19.8

Test the claim that there is no difference in the earnings of immigrants from the four different countries. Use $\alpha = 0.05$ (20 mks)

Question 4

- a) Explain three advantages and three disadvantages of non-parametric methods. (6 mks)
- b) Independent random samples of three different brands of magnetron tubes were subjected to stress testing the number of hours each operated without repair was recorded. Experience has shown that the distributions of life length for manufactured products are often non-normal and thus not proper use of an ANOVA F-test.

Brand A	36	48	5	67	53
Brand B	49	33	60	2	55
Brand C	7	31	140	59	42
			-		

Use the Kruskal-Wallis H-test to determine whether evidence exists to conclude that the brands of tube differ in length of life under stress at 10% level of significance. (14 mks)

FORMULAE

1. Regression Analysis

$$y = a + bx$$

Where
$$b = \frac{n\sum xy - \sum x\sum y}{n\sum x^{2} - (\sum x)^{2}}$$
$$a = \frac{\sum y - b\sum x}{n}$$

Test statistics for $H_0: b = 0$

$$t = \frac{b}{s/\sqrt{\sum x^2 - \frac{(\sum x)^2}{n}}}, \quad s^2 = \frac{\sum y^2 - b\sum xy}{n-2}$$

2. $A = (1 - \alpha)100\%$ CI for mean

$$\mu = \bar{x} \pm t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}$$

3. Chi-square test

$$x^{2} = \sum (O - E)^{2} / E$$
 where $E = \frac{r_{i}c_{j}}{n}$

4. ANOVA

$$A
S^{2}{}_{B} = \frac{n_{1}(\overline{x}_{1} - \overline{x})^{2} + n_{2}(\overline{x}_{2} - \overline{x})^{2} \dots + n_{x}(\overline{x}_{x} - \overline{x})^{2}}{k - 1}
S^{2}{}_{w} = \frac{n_{1}s_{1}^{2} + n_{2}s_{2}^{2} + \dots + n_{k}s_{k}^{2}}{n - k}
\overline{x} = \frac{n_{1}\overline{x}_{1} + n_{2}\overline{x}_{2} + \dots + n_{k}s_{k}^{2}}{n}
F = \frac{S_{B}^{2}}{S_{W}^{2}}$$

5. Kruskal-Wallis test.

$$H = \frac{12}{n(n+1)} \sum_{i=1}^{n-2} T_{i}^{2} / n_{i} - 3(n+1)$$