KENYA METHODIST UNIVERSITY 1st TRIMESTER EXAMINATION Jan - April 2008

FACULTY	:	SCIENCE AND SOCIAL STUDIES
DEPARTMENT	:	COMPUTER & INFORMATION SCIENCE
COURSE CODE	:	MATH 221
COURSE TITLE	:	VECTOR ANALYSIS
MODE	:	SCHOOL BASED
TIME	:	2 Hrs

Instructions: Answer Question 1 and other two Questions

Question 1 (20 Marks)

- 1. If $\mathbf{r}_1 = 2\mathbf{i} \mathbf{j} + \mathbf{k}$, $\mathbf{r}_2 = 2\mathbf{i} 4\mathbf{j} 3\mathbf{k}$, $\mathbf{r}_3 = -2\mathbf{i} + \mathbf{j} 3\mathbf{k}$ and $\mathbf{r}_4 = 3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}$, find scalars a,b,c such that $\mathbf{r}_4 = \mathbf{ar}\mathbf{1} + \mathbf{br}_2 + \mathbf{cr}_3$. (5 Mks).
- 2. Forces **A**, **B** and **C** acting on an object are given in terms of their components by the vector equations $\mathbf{A} = A_1\mathbf{i} + A_2\mathbf{j} + A_3\mathbf{k}$, $\mathbf{B} = B_1\mathbf{i} + B_2\mathbf{j} + B_3\mathbf{k}$, $\mathbf{C} = C_1\mathbf{i} + C_2\mathbf{j} + C_3\mathbf{k}$. Find the magnitude of these forces. (5 Mks).
- 3. The position vectors of points P and Q are given by $\mathbf{r}_1 = 2\mathbf{i} + 3\mathbf{j} \mathbf{k}$, $\mathbf{r}_2 = 4\mathbf{i} 3\mathbf{j} + 2\mathbf{k}$. determine **PQ** in terms of **i**, **j**, **k** and find its magnitude. (5 Mks)
- 4. If A is any vector, prove that $\mathbf{A} = (\mathbf{A}.\mathbf{i})\mathbf{i} + (\mathbf{A}.\mathbf{j})\mathbf{j} + (\mathbf{A}.\mathbf{k})\mathbf{k}$ (5 Mks)

Question 2 (20 Marks)

- 1. A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$ where *t* is the time.
 - i. Determine its velocity and acceleration at any time
 - ii. Find the magnitudes of the velocity and acceleration at t = 0

(5 Mks)

- 2. i)Find the unit tangent vector to any point on the curve $x = t^2+1$, y = 4t 3, $z = 2t^2-6t$ ii)Determine the unit tangent at the point where t = 2. (5 Mks)
- 3. If $\mathbf{A} = 5t^2\mathbf{i} + t\mathbf{j} t^3\mathbf{k}$ and $\mathbf{B} = \sin t\mathbf{i} \cos t\mathbf{j}$ find

i)
$$\frac{d}{dt}$$
(A.B) ii) $\frac{d}{dt}$ (AxB) iii) $\frac{d}{dt}$ (A.A) (5 Mks)

4. Determine a unit vector that is perpendicular to the plane of $\mathbf{A} = 2\mathbf{i} - 6\mathbf{j} - 3\mathbf{k}$ and $\mathbf{B} = 4\mathbf{i} + 3\mathbf{j} - \mathbf{k}$. Similarly determine a unit vector parallel to the same. (5 Mks)

Question 3 (20 Marks)

- 1. If $\phi(x, y, z) = 3x^2y y^3z^2$ find $\nabla \phi$ (or grad ϕ) at the point (1,-2,-1). (3 Mks)
- **2.** Find a unit normal to the surface $x^2y + 2xz = 4$ at the point (2,-2,3). (2 Mks)
- 3. Find the directional derivative of $\phi = x^2 yz + 4xz^2$ at (1,-2,-1) in the direction $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ (5 Mks)
- 4. If $\mathbf{A} = xz^3\mathbf{i} 2x^2yz\mathbf{j} + 2yz^4\mathbf{k}$ find ∇xA (or curl **A**) at the point (1, -1, 1) (5 Mks)
- 5. If $\mathbf{R}(\underline{u}) = (\underline{u} \underline{u}^2)\mathbf{i} + 2\mathbf{u}^3\mathbf{j} 3\mathbf{k}$ find

i)
$$\int R(u) du$$
 ii) $\int_{1}^{2} R(u) du$ (5 mks)

Question 4 (20 Marks)

- 1. If $\mathbf{A} = (3x^2 + 6y)\mathbf{i} 14yz\mathbf{j} + 20xz^2\mathbf{k}$, evaluate $\int_c A.dr$ from (0,0,0) to (1,1,1) along the following paths C:
 - i. $x = t, y = t^{2}, z = t^{3}$
 - ii. The straight lines from (0,0,0) to (1,0,0), then to (1,1,0), then to (1,1,1).
 - iii. The straight line joining (0,0,0) and (1,1,1). (5 Mks)
- 2. Find the area of the triangle having vertices at P(1,3,2), Q(2,-1,-1), R(-1,2,3). (5 Mks)
- 3. If $\mathbf{A} = A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k}$, $\mathbf{B} = B_1 \mathbf{i} + B_2 \mathbf{j} + B_3 \mathbf{k}$, $\mathbf{C} = C_1 \mathbf{i} + C_2 \mathbf{j} + C_3 \mathbf{k}$ show that

A.(B x C) =
$$\begin{vmatrix} A_1 A_2 A_3 \\ B_1 B_2 B_3 \\ C_1 C_2 C_3 \end{vmatrix}$$
 (5 Mks)

4. For what values of a are $\mathbf{A} = a\mathbf{i} - 2\mathbf{j} + \mathbf{k}$, $\mathbf{B} = 2a\mathbf{i} + a\mathbf{j} - 4\mathbf{k}$ perpendicular?(5 Mks)