KENYA METHODIST UNIVERSITY
1st TRIMESTER EXAMINATION
Jan - April 2008

| FACULTY | $:$ | SCIENCE AND SOCIAL STUDIES |
| :--- | :--- | :--- |
| DEPARTMENT | $:$ | COMPUTER \& INFORMATION SCIENCE |
| COURSE CODE | $:$ | MATH 221 |
| COURSE TITLE | $:$ | VECTOR ANALYSIS |
| MODE | $:$ | SCHOOL BASED |
| TIME | $:$ | 2 Hrs |

Instructions: Answer Question 1 and other two Questions

## Question 1 (20 Marks)

1. If $\mathbf{r}_{1}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}, \mathbf{r}_{2}=2 \mathbf{i}-4 \mathbf{j}-3 \mathbf{k}, \mathbf{r}_{3}=-2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$ and $\mathbf{r}_{4}=3 \mathbf{i}+2 \mathbf{j}+5 \mathbf{k}$, find scalars $\mathrm{a}, \mathrm{b}, \mathrm{c}$ such that $\mathbf{r}_{4}=\mathrm{ar} 1+\mathrm{b} \mathbf{r}_{2}+\mathrm{c} \mathbf{r}_{3}$
( 5 Mks ).
2. Forces $\mathbf{A}, \mathbf{B}$ and $\mathbf{C}$ acting on an object are given in terms of their components by the vector equations $\mathbf{A}=\mathrm{A}_{1} \mathbf{i}+\mathrm{A}_{2} \mathbf{j}+\mathrm{A}_{3} \mathbf{k}, \mathbf{B}=\mathrm{B}_{1} \mathbf{i}+\mathrm{B}_{2} \mathbf{j}+\mathrm{B}_{3} \mathbf{k}, \mathbf{C}=\mathrm{C}_{1} \mathbf{i}+\mathrm{C}_{2} \mathbf{j}+\mathrm{C}_{3} \mathbf{k}$. Find the magnitude of these forces.
( 5 Mks ).
3. The position vectors of points $P$ and $Q$ are given by $\mathbf{r}_{1}=2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}, \mathbf{r}_{2}=4 \mathbf{i}-3 \mathbf{j}+$ $2 \mathbf{k}$. determine $\mathbf{P Q}$ in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ and find its magnitude.
( 5 Mks )
4. If $\mathbf{A}$ is any vector, prove that $\mathbf{A}=(\mathbf{A} . \mathbf{i}) \mathbf{i}+(\mathbf{A} . \mathbf{j}) \mathbf{j}+(\mathbf{A . k}) \mathbf{k}$

## Question 2 (20 Marks)

1. A particle moves along a curve whose parametric equations are $x=e^{-t}, y=2 \cos 3 t, z=2 \sin 3 t$ where $t$ is the time.
i. Determine its velocity and acceleration at any time
ii. Find the magnitudes of the velocity and acceleration at $t=0$
(5 Mks)
2. i) Find the unit tangent vector to any point on the curve $x=t^{2}+1, y=4 t-3, z=2 t^{2}-6 t$ ii)Determine the unit tangent at the point where $t=2$.
( 5 Mks )
3. If $\mathbf{A}=5 t^{2} \mathbf{i}+\mathrm{t} \mathbf{j}-\mathrm{t}^{3} \mathbf{k}$ and $\mathbf{B}=\sin \mathrm{t} \mathbf{i}-\cos \mathbf{t} \mathbf{j}$ find
i) $\frac{d}{d t}$ (A.B)
ii) $\frac{d}{d t}(\mathbf{A} \times \mathbf{B})$
iii) $\frac{d}{d t}$ (A.A)
(5 Mks)
4. Determine a unit vector that is perpendicular to the plane of $\mathbf{A}=2 \mathbf{i}-6 \mathbf{j}-3 \mathbf{k}$ and $\mathbf{B}=4 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$. Similarly determine a unit vector parallel to the same. ( $\mathbf{5} \mathbf{~ M k s}$ )

## Question 3 (20 Marks)

1. If $\phi(x, y, z)=3 x^{2} y-y^{3} z^{2}$ find $\nabla \phi($ or $\operatorname{grad} \phi)$ at the point $(1,-2,-1) . \quad$ ( $\mathbf{3} \mathbf{M k s}$ )
2. Find a unit normal to the surface $x^{2} y+2 x z=4$ at the point $(2,-2,3)$.
(2 Mks)
3. Find the directional derivative of $\phi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction $2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$
4. If $\mathbf{A}=x z^{3} \mathbf{i}-2 x^{2} y z \mathbf{j}+2 \mathrm{yz}^{4} \mathbf{k}$ find $\nabla x A($ or curl $\mathbf{A})$ at the point $(1,-1,1)$
5. If $\mathbf{R}(\underline{u})=\left(u-u^{2}\right) \mathbf{i}+\mathbf{2} \mathbf{u}^{3} \mathbf{j}-3 \mathbf{k}$ find
i) $\int R(u) d u$
ii) $\int_{1}^{2} R(u) d u$
( 5 mks )

## Question 4 (20 Marks)

1. If $\mathbf{A}=\left(3 x^{2}+6 y\right) \mathbf{i}-14 y z \mathbf{j}+20 x z^{2} \mathbf{k}$, evaluate $\int_{c} A \cdot d r$ from $(0,0,0)$ to $(1,1,1)$ along the following paths C :
i. $\quad \mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2} \mathrm{z}=\mathrm{t}^{3}$
ii. The straight lines from $(0,0,0)$ to $(1,0,0)$, then to $(1,1,0)$, then to $(1,1,1)$.
iii. The straight line joining $(0,0,0)$ and $(1,1,1)$.
(5 Mks)
2. Find the area of the triangle having vertices at $\mathrm{P}(1,3,2), \mathrm{Q}(2,-1,-1), \mathrm{R}(-1,2,3)$.
(5 Mks)
3. If $\mathbf{A}=\mathrm{A}_{1} \mathbf{i}+\mathrm{A}_{2} \mathbf{j}+\mathrm{A}_{3} \mathbf{k}, \mathbf{B}=\mathrm{B}_{1} \mathbf{i}+\mathrm{B}_{2} \mathbf{j}+\mathrm{B}_{3} \mathbf{k}, \mathbf{C}=\mathrm{C}_{1} \mathbf{i}+\mathrm{C}_{2} \mathbf{j}+\mathrm{C}_{3} \mathbf{k}$ show that

$$
\mathbf{A .}(\mathbf{B} \times \mathbf{C})=\left|\begin{array}{l}
A_{1} A_{2} A_{3}  \tag{5Mks}\\
B_{1} B_{2} B_{3} \\
C_{1} C_{2} C_{3}
\end{array}\right|
$$

4. For what values of $a$ are $\mathbf{A}=\mathbf{a i}-2 \mathbf{j}+\mathbf{k}, \mathbf{B}=2 \mathbf{a} \mathbf{i}+\mathbf{a j}-4 \mathbf{k}$ perpendicular?( $\mathbf{5} \mathbf{M k s}$ )
