## KENYA METHODIST UNIVERSITY

## END OF FIRST TRIMESTER 2008 EXAMINATIONS

| FACULTY | $:$ | SCIENCE AND SOCIAL STUDIES |
| :--- | :--- | :--- |
| DEPARTMENT | $:$ | COMPUTER AND INFORMATION SCIENCE |
| COURSE CODE | $:$ | MATH 231 |
| COURSE TITLE | $:$ | BIOSTATISTICS |
| TIME | $:$ | 3 HOURS |

## Instructions:

- Answer question ONE (compulsory) and any other TWO questions.


## Question 1

a) The following are the weights in pounds of children at a day-care centre.

Weight (lb) 10-19 $20-29$ 30-39 $40-49 \quad 50-59 \quad 60-69 \quad 70-79$
$\begin{array}{llllllll}\text { Frequency } & 5 & 10 & 13 & 7 & 4 & 4 & 3\end{array}$
Calculate the following
(i) Mean
(ii) Standard deviation
(iii) Median
b) Assume that among diabetics the fasting blood level of glucose is approximately normally distributed with a mean of 105 mg per 100 ml and a standard deviation of 9 mg per 100 ml . Calculate
(i) Proportion of diabetics having levels between 90 and 125 mg per 100 ml .
(ii) Level cut off the lower $10 \%$ of diabetics.
(iii) Levels encompassing $95 \%$ of diabetics.
c) The following data is for the percentage saturation of bile for male patients

| 40 | 86 | 111 | 86 | 106 | 66 | 123 | 90 | 112 | 52 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 88 | 137 | 88 | 88 | 65 | 79 | 87 | 56 | 110 | 78 |
| 80 | 47 | 74 | 58 | 88 | 73 | 118 | 67 | 57 |  |

Construct a $99 \%$ confidence interval for the true mean.
( 5 mks )
d) Each of the hypertensive patients were administered several drugs on different occasions. The results of concern are for a placebo drug compared with hydrochlorothiazide. Each patient first received the placebo and then one month later they each received hydrochlorothiazide. Blood pressure was recorded on these two occasions and recorded.

| Patient: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Placebo: | 211 | 210 | 210 | 203 | 196 | 190 | 191 | 177 | 173 | 170 | 163 |
| Hydrochlorothiazide: | 181 | 172 | 196 | 191 | 167 | 161 | 178 | 160 | 149 | 119 | 156 |

On the basis of these experimental results, is there any evidence of a difference in mean systolic blood pressure during the use of these two drugs?
e) Clearly explain the four requirements for life-table calculations.

## Question 2

a) Some investigators were interested in studying changing patterns in soft tissue sarcomas over time. There are three principle types of these sarcomas, one of which is fibroid, which is characterised by a muscle cell origin. To study this question the investigators utilized data on soft-tissue sarcomas of the arms and legs from Tumor Registry given below.

Decade

| Type of tissue | $1935-44$ | $1945-54$ | $1955-64$ |
| :--- | :---: | :---: | :---: |
| Fibroids | 40 | 70 | 93 |
| Others | 33 | 42 | 85 |

Test whether the tissue type is independent of the decade at $95 \%$ confidence level.
(7 mks)
b) An experiment was conducted at a particular university to study the psychological environment effect on the anatomy of the brain. A group of 19 rats was randomly divided into two groups. Twelve animals in the treatment group lived together in a large cage furnished with play things that were changed daily. While animals in the control group lived isolation with no toys. After a month, the experimental animals were killed and dissected. The following table gives the cortex weights (th thinking part of the brain) in milligrams.

| Treatment | 707 | 740 | 745 | 652 | 649 | 676 | 699 | 696 | 712 | 708 | 749 | 690 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| control | 669 | 650 | 651 | 627 | 656 | 642 | 698 |  |  |  |  |  |

Test whether the true means for the two groups are significant at $99 \%$ confidence level. ( 8 mks )

## Question 3

a) Among susceptible individuals exposed to a particular infectious agent, $36 \%$ generally develop clinical disease. A random sample of size 144 people suspected of exposure to the agent, only 35 developed clinical diseases. Does this data support the claim at $95 \%$ confidence?
(5 mks
b) An important characteristic of glaucoma, an eye disease, is the presence of classic visual field loss. Tonometry is a common form of glaucoma screening, wherein, for example, an eye is classified as positive if it has an intraocular pressure of 21 mmhg of higher at a single reading. Given the following data

Test

| Field loss | Positive | Negative |
| :--- | :---: | :---: |
| Yes | 13 | 7 |
| No | 413 | 4567 |

Calculate this screening test;
(i) Sensitivity.
(ii) Specificity.

## Question 4

The following table gives four measures of academic performance for a sample of 12 medical students: GPA in the preclinical years and the National Board Scores.

| GPA x | 2.1 | 3.0 | 2.2 | 3.4 | 3.6 | 2.5 | 2.9 | 2.9 | 2.0 | 3.4 | 2.5 | 2.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| NBS y | 84 | 89 | 78 | 92 | 94 | 85 | 88 | 86 | 82 | 90 | 84 | 83 |

a) Plot a scatter diagram to represent the data. (3 mks)
b) Calculate the sample correlation coefficient between GPA and National Board Scores. ( 6 mks )
c) Fit a least squares regression line to the data.

## FORMULAE

1. Descriptive statistics.

$$
\begin{aligned}
& \bar{x}=\frac{\sum f x}{N} \\
& \sigma^{2}=1 / N \sum f x^{2}-\bar{x}^{2} \text { or } \sigma^{2}=1 / N \sum f(x-\bar{x})^{2} \\
& M_{d}=l+\frac{h}{f}(N / 2-C)
\end{aligned}
$$

2. $A(1-\alpha) 100 \%$ CI for mean

$$
\mu=\bar{x} \pm t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}
$$

3. Test of hypothesis paired differences.
a) Paired differences

$$
t=\frac{\bar{d}}{s_{d} / \sqrt{n}}
$$

b) Independent samples

$$
\begin{aligned}
& t=\frac{\bar{x}_{1}-\bar{x}_{2}}{s_{p} \sqrt{1 / n_{1}+1 / n_{2}}} \\
& s^{2}{ }_{d}=\frac{\left(n_{1}-1\right) s_{1}{ }^{2}+\left(n_{2}-1\right) s_{2}{ }^{2}}{n_{1}+n_{2}-2}
\end{aligned}
$$

4. Chi square test.

$$
\begin{aligned}
& x^{2}=\sum \frac{(O-E)^{2}}{E} \\
& E_{i_{j}}=\frac{R_{i} C_{j}}{n}
\end{aligned}
$$

5. Test about proportion, $\mathbf{p}$.

$$
Z=\frac{\hat{\hat{p}}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}, \quad \hat{p}=\frac{x}{n}
$$

## 6. Regression and correlation.

a) $\quad r=\frac{n \sum x y-\sum x \sum y}{\sqrt{\left[n \sum x^{2}-\left(\sum x\right)^{2}\right]\left[n \sum y^{2}-\left(\sum y\right)^{2}\right]}}$ or $r=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^{2}(y-\bar{y})^{2}}}$
b) Line $y=a+b x$

$$
\begin{gathered}
b=\frac{n \sum x y-\sum x \sum y}{n \sum x^{2}-\left(\sum x\right)^{2}} \quad \text { or } b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}} \\
\quad a=\frac{\sum y-b \sum x}{n}
\end{gathered}
$$

