KENYA METHODIST UNIVERSITY THIRD TRIMESTER April 2008

:	SCIENCE & SOCIAL STUDIES
	COMPUTER & INFORMATION SCIENCE
:	MATH 320
:	Numerical Analysis
:	School based
:	2 HRS
	: : : :

Instructions: Attempt Question 1 in Section A and any other two questions in Section B.

SECTION A

Question 1 (20 Mks)

- 1. Write the Maclaurin expansion for sin x. (5 Mks)
- 2. Find the highest common factor of $f(x) = x^3 4x^2 + 5x 2$ and $g(x) = 3x^2 8x + 5$ (5 Mks)
- 3. Using the Elimination method, solve the system:
- $2x_1 + 3x_2 + 5x_3 = 5$ $3x_1 + 4x_2 + 7x_3 = 6$ $x_1 + 3x_2 + 2x_3 = 5$ (5 Mks)
- 4. Solve the System

$$x_1 - 2x_2 = 1$$

$$x_1 + 4x_2 = 4$$

by the Gauss-Sidel Method.

SECTION B

Question 2

1.	For a five	digit floating point number define the following terms:	(2 Mks)
	1.	Mantissa	
	 11.	Exponent	
2.	Define and	d give an example of	(4 Mks)
	1.	Truncation error	
	••		

ii. Rounding error

(5 MKs)

3. If the exact answer is A and the computed answer is B, find the absolute and relative error when

$$A = 10.147$$
 $B = 10.159$ $A = 0.0047$ $B = 0.0045$ $A = 0.671 \ge 10^{12}$ $B = 0.669 \ge 10^{12}$ (3 Mks)

4. Let $a = 0.471 \times 10^{-2}$ and $b = -0.185 \times 10^{-4}$. Use 3 digit floating point arithmetic to compute

i.
$$a + b$$

ii. $a - b$
iii. a/b
iv. $a*b$ (4 MKs)

5. Find the six digit binary floating point representations of

Question 3

1. Using Taylor Series or otherwise derive the Newton-Raphson method. Use four iterations to find x such that

$$f(x) = x^4 - 5 = 0$$
 taking $x_0 = 2$ as an initial estimate. (10 Mks)

2. Express the numbers

x = 12.74 and y = 0.0025 and z = -12.55 as three digit decimal, floating point numbers. Compute the expression (x - y)/(x + z) using three digit floating point arithmetic. Identify the rounding errors at each step of the calculation, and, calculate the total error due to rounding in the calculation. (10 Mks)

Question 4

1. Solve the system of equations

i.
$$x_1 - x_2 + 2x_3 = 4$$

 $-x_1 + 4x_2 + x_3 = -7$
 $2x_1 + x_2 + 5x_3 = 5$

ii.
$$x_1 - x_2 + 2x_3 = 0$$

 $-x_1 + 4x_2 + x_3 = 3$
 $2x_1 + x_2 + 5x_3 = 1$

By Gaussian elimination

2. Sketch the cubic polynomial

 $p(x) = 4x^3 - 10x^2 + 2x + 5$ to get a rough estimate of its roots. Use the Newton-Raphson method to approximate each root to 4 decimal places (10 Mks)

(10 Mks)