KENYA METHODIST UNIVERSITY
THIRD TRIMESTER
April 2008

FACULTY	$:$	SCIENCE \& SOCIAL STUDIES
DEPARTMENT:		COMPUTER \& INFORMATION SCIENCE
COURSE CODE	$:$	MATH 320
COURSE TITLE	$:$	Numerical Analysis
MODE	$:$	School based
TIME	$:$	2 HRS

Instructions: Attempt Question 1 in Section A and any other two questions in Section B.

SECTION A

Question 1 (20 Mks)

1. Write the Maclaurin expansion for $\sin \mathrm{x}$.
2. Find the highest common factor of $f(x)=x^{3}-4 x^{2}+5 x-2$ and $g(x)=3 x^{2}-8 x+5$
3. Using the Elimination method, solve the system:

$$
\begin{align*}
& 2 x_{1}+3 x_{2}+5 x_{3}=5 \\
& 3 x_{1}+4 x_{2}+7 x_{3}=6 \\
& x_{1}+3 x_{2}+2 x_{3}=5 \tag{5Mks}
\end{align*}
$$

4. Solve the System

$$
\begin{aligned}
& x_{1}-2 x_{2}=1 \\
& x_{1}+4 x_{2}=4
\end{aligned}
$$

by the Gauss-Sidel Method.

SECTION B

Question 2

1. For a five digit floating point number define the following terms:
i. Mantissa
ii. Exponent
2. Define and give an example of
i. Truncation error
ii. Rounding error
3. If the exact answer is A and the computed answer is B, find the absolute and relative error when
$A=10.147$
$B=10.159$
$\mathrm{A}=0.0047$
$B=0.0045$
$\mathrm{A}=0.671 \times 10^{12}$
$B=0.669 \times 10^{12}$
4. Let $\mathrm{a}=0.471 \times 10^{-2}$ and $\mathrm{b}=-0.185 \times 10^{-4}$. Use 3 digit floating point arithmetic to compute

$$
\begin{align*}
\text { i. } & a+b \\
\text { ii. } & a-b \\
\text { iii. } & a / b \\
\text { iv. } & a^{*} b \tag{4MKs}
\end{align*}
$$

5. Find the six digit binary floating point representations of

$$
\begin{equation*}
7,27,0.125,14.75,0.3 \tag{7Mks}
\end{equation*}
$$

Question 3

1. Using Taylor Series or otherwise derive the Newton-Raphson method. Use four iterations to find x such that
$f(x)=x^{4}-5=0$ taking $x_{0}=2$ as an initial estimate.
2. Express the numbers
$x=12.74$ and $y=0.0025$ and $z=-12.55$ as three digit decimal, floating point numbers.
Compute the expression $(x-y) /(x+z)$ using three digit floating point arithmetic. Identify the rounding errors at each step of the calculation, and, calculate the total error due to rounding in the calculation.

Question 4

1. Solve the system of equations
i. $\quad x_{1}-x_{2}+2 x_{3}=4$
$-x_{1}+4 x_{2}+x_{3}=-7$
$2 \mathrm{x}_{1}+\mathrm{x}_{2}+5 \mathrm{x}_{3}=5$
ii. $x_{1}-x_{2}+2 x_{3}=0$

$$
\begin{aligned}
& -x_{1}+4 x_{2}+x_{3}=3 \\
& 2 x_{1}+x_{2}+5 x_{3}=1
\end{aligned}
$$

By Gaussian elimination
2. Sketch the cubic polynomial
$p(x)=4 x^{3}-10 x^{2}+2 x+5$ to get a rough estimate of its roots. Use the Newton-Raphson method to approximate each root to 4 decimal places

