KENYA METHODIST UNIVERSITY

END OF FIRST TRIMESTER 2008 EXAMINATIONS

FACULTY	:	SCIENCE AND SOCIAL STUDIES
DEPARTMENT	:	COMPUTER AND INFORMATION SCIENCE
COURSE CODE	:	MATH 332
COURSE TITLE	:	THEORY OF ESTIMATION
TIME	:	2 HOURS

Instructions:

• Answer question **ONE** (compulsory) and any other **TWO** questions.

Question 1

- a) Explain the four properties of a good estimator. (8 mks) b) Let $x_1, x_2, ..., x_n$ be a random sample selected from a population with mean μ and variance σ^2 . Show that the sample variance $s^2 = \frac{1}{n-1} \sum (x - \bar{x})^2$ is an unbiased estimator for σ^2 (5 mks)
- c) Let $x_1, x_2, ..., x_n$ be a random sample from a normal distribution with mean μ and variance σ^2 with p.d.f given as $f(x, \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma}(x-\mu)^2\right\}$ Find the maximum likelihood estimators for μ and σ^2 . (7 mks)
- d) The following sample of IQ measurements of students selected from a class whose distribution is normal 99 91 80 110 95 121 106 106 78 83 115 100 97 82 100 104 114 118 101 120 06 70

90	101	19	130	101	94	101	19		
calcu	late								
(i) Standard error.									(2 mks)
(ii) 98% confidence interval for the true mean.									(5 mks)

e) Explain what is meant by Minimum Variance Unbiased Estimators (MVUE). (5 mks)

Question 2

a) A random sample of n observations $x_1, x_2, ..., x_n$ is selected from a population that possesses a Gamma probability density function with parameters α and β .

$$f(x,\alpha,\beta) = \frac{1}{\Gamma \alpha \beta^{\alpha}} e^{-x/\beta} x^{\alpha-1}, \ x \ge 0.$$

Where $\mu = \alpha \beta$ and $\sigma^2 = \beta^2$

Find the moment estimators for the unknown parameters. (10 mks)

b) State Crammer-Rao inequality and give its significance in the theory of estimation. (4 mks)

c) The Binomial distribution is given as

$$f(x, p) = \binom{n}{x} p^{x} (1-p)^{n-x}, x = 0, 1, ..., n.$$

Show that the distribution belong to the one parameter exponential families. Hence or otherwise find a complete and sufficient statistic for p. (6 mks)

Question 3

- a) Briefly explain what is meant by Bayesian Estimation. (4 mks)
- b) Let $y = \beta_0 + \beta_1 x + \varepsilon$ be a linear model and ε is normally distributed with mean 0 and variance σ^2 . The least squares estimators are given as $\sum \left(x - \overline{x}\right) \left(x - \overline{y}\right)$

$$\hat{\beta}_{1} = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^{2}}$$
$$\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1}\overline{x}$$

Show that the estimators $\hat{\beta}_1$ and $\hat{\beta}_0$ are unbiased for β_1 and β_0 respectively.(8 mks)

c) The IQ scores given below were obtained at random from a normally distributed population.
85, 91, 93, 99, 103, 107, 111, 115, 122, 95 construct a 95% confidence interval for the population variance. (8 mks)

Question 4

- a) State Rao-Blackwell Theorem. (3 mks)
- b) Given a sample x₁, x₂,..., x_n is distributed as Bernoulli f(x/p) = p^x(1-p)^{1-x}, x = 0,1 and the distribution of the parameter p is uniform h(p)=1, 0 ≤ p ≤ 1 Find the posterior distribution of p.
- c) Show that the normal distribution with mean μ and variance σ^2 belong to a two parameter exponential families. (5 mks)
- d) The following sample was selected from a normally distributed with unknown mean μ and known σ^2 69, 81, 67, 80, 71, 70, 78, 68, 57, 59 Construct a 98% confidence interval for the population mean. (7 mks)