KENYA METHODIST UNIVERSITY

End of Trimester I, 2008 Examination

Faculty	$:$	Science and Social Studies
Department $:$	Computer and Information Science	
Course Code $:$	MATH 410	
Course Title	$:$	Complex Analysis I
Mode	$:$	School-Based
Time	$:$	2 Hours

Instructions: Answer Question One and ANY OTHER TWO questions

Question One ($\mathbf{3 0}$ marks) - Compulsory:

a. Give two complex numbers $\mathrm{U}=3+5 \mathrm{i}$ and $\mathrm{V}=5-7 \mathrm{i}$, determine:

$$
\begin{array}{ll}
\text { (i.) } & \mathrm{U}+\mathrm{V} \\
\text { (ii.) } & \mathrm{V} * \mathrm{U}
\end{array}
$$

b. \quad Define the domain of definition for the function $f(z)=\frac{1}{z^{2}+1}$
c. Verify that $\frac{1+2 \mathrm{i}}{3-4 \mathrm{i}}+\frac{2-\mathrm{i}}{5 \mathrm{i}}=\frac{-2}{5}$
d. Use de Moivre's formula to derive the following trigonometric identity:

$$
\operatorname{Cos} 3 \theta=\operatorname{Cos}^{3} \theta-3 \operatorname{Cos} \theta \operatorname{Sin}^{2} \theta
$$

e. Find all the tree cube roots of -8 i
f. Write the function $f(z)=z+1 / z(z \neq 0)$ in the form $f(z)=u(r, \theta)+i v(r, \theta)$

Question Two (20 marks)

a. Show that the function $f(z)=z^{2}$ is differentiable
b. Use the properties of conjugates and moduli to show that

i. $\overline{\mathrm{z}}+3 \mathrm{i}=\mathrm{z}+3 \mathrm{i}$	$(6 \mathrm{marks})$
ii. $\|\mathrm{z}\|=\|\overline{\mathrm{z}}\|$	(4 marks)

c. \quad Given $\mathrm{f}(\mathrm{z})=\frac{2 \mathrm{z}+1}{\mathrm{z}\left(\mathrm{z}^{2}+1\right)}$

Determine the singular points and state why the function is analytic everywhere except at those points
(6 marks)

Question Three (20 marks)

a. Using Cauchy-Riemann equations, show that $\mathrm{f}^{\prime}(\mathrm{z})$ does not exist if $\mathrm{f}(\mathrm{z})=2 \mathrm{x}+\mathrm{ixy}^{2}(4$ marks $)$
b. \quad Show that $\left|e^{i \theta}\right|=1$
(5 marks)
c. Find the principle $\operatorname{argument} \operatorname{Arg} \mathrm{Z}$ when $\mathrm{z}=\frac{-2}{1+\sqrt{3} \mathrm{i}}$
d. Evaluate the integrals of t , for the following functions, in the given intervals:

> i. $\mathrm{F}(\mathrm{z})=\mathrm{e}^{-\mathrm{zt}}, 0$ to ∞
> ii. $\mathrm{F}(\mathrm{z})=\mathrm{e}^{\mathrm{it}}, 0$ to $\pi / 4$
(6 marks)

Question Four (20 marks)

a. Find the four roots of the equation $z^{4}+4=0$ and use them factor $z^{4}+4$ into quadratic factors with real coefficients
(10 marks)
b. Describe the domain of definition for the function $f(z)=\frac{1}{z^{2}+1}$
(4 marks)
c. Express the function $\mathrm{f}(\mathrm{z})=\mathrm{z}^{3}$ in polar coordinates
(4 marks)
d. \quad Solve $(1-i)^{4}$

