KENYA METHODIST UNIVERSITY End of Trimester I, 2008 Examination

Faculty	:	Science and Social Studies
Department	:	Computer and Information Science
Course Code	:	MATH 410
Course Title	:	Complex Analysis I
Mode	:	School-Based
Time	:	2 Hours

Instructions: Answer Question One and ANY OTHER TWO questions

Question One (30 marks) – Compulsory:

a.	Give two complex numbers $U = 3 + 5i$ and $V = 5 - 7i$, determine:			
	(i.) U+ V			
	(ii.) V * U	(4 marks)		
b.	Define the domain of definition for the function $f(z) = 1$	(4 marks)		
	$z^{2} + 1$			
c.	Verify that $1 + 2i + 2 - i = -2$			
	3 - 4i 5i 5	(6 marks)		
d.	Use de Moivre's formula to derive the following trigonometric identity:			
	$\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$	(6 marks)		
e.	Find all the tree cube roots of -8i	(6 marks)		
f.	Write the function $f(z) = z + 1/z$ ($z \neq 0$) in the form $f(z) = u(r,\theta) + iv(r,\theta)$	(4 marks)		
Ques	tion Two (20 marks)			
a.	Show that the function $f(z) = z^2$ is differentiable	(4 marks)		
b.	Use the properties of conjugates and moduli to show that			
	i. $\overline{z} + 3i = z + 3i$	(6 marks)		
	ii. $ z = \overline{z} $	(4 marks)		
c.	Given $f(z) = 2z + 1$			
	$z(z^2 + 1)$			

Determine the singular points and state why the function is analytic everywhere except at those points (6 marks)

Question Three (20 marks)

a. Using Cauchy-Riemann equations, show that f'(z) does not exist if $f(z) = 2x + ixy^2(4 \text{ marks})$

b. Show that
$$|e^{i\theta}| = 1$$
 (5 marks)
c. Find the principle argument Arg Z when $z = -2$ (5 marks)

c. Find the principle argument Arg Z when
$$z = \frac{-2}{1 + \sqrt{3}i}$$

d. Evaluate the integrals of t, for the following functions, in the given intervals:

i.
$$F(z) = e^{-zt}$$
, 0 to ∞

ii.
$$F(z) = e^{it}$$
, 0 to $\pi/4$ (6 marks)

Question Four (20 marks)

a.	Find the four roots of the equation $z^4 + 4 = 0$ and use them factor z	$t^4 + 4$ into quadratic factors
	with real coefficients	(10 marks)

- b. Describe the domain of definition for the function $f(z) = \frac{1}{z^2 + 1}$
- c. Express the function $f(z) = z^3$ in polar coordinates (4 marks) (4 marks)
- d. Solve $(1-i)^4$ (2 marks)