KENYA METHODIST UNIVERSITY

END OF FIRST TRIMESTER 2008 EXAMINATIONS

FACULTY : SCIENCE AND SOCIAL STUDIES
 DEPARTMENT : COMPUTER AND INFORMATION SCIENCE
 COURSE CODE : PHYS 310
 COURSE TITLE : ELECTRICAL CIRCUITS
 TIME : 2 HOURS

Instructions:

- Answer question ONE (compulsory) and any other TWO questions.

Question 1

a) Discuss the distinction between loads connected in series and loads connected in parallel.
(4 mks)
b) A voltage divider is to give an output voltage of 10 v from an input voltage of 30 v as shown.

Calculate the resistance R_{1}, given $r_{2}=100 \Omega$.
c) An a.c generator consists of 8 turns of wire of area $\mathrm{A}=0.09 \mathrm{~m}^{2}$ and total resistance 12Ω. the loop operates in a magnetic field $\mathrm{B}=0.5 \mathrm{~T}$ at a constant frequency of 60 Hz . Calculate the :-
(i) Maximum induced e.m.f.
(ii) Maximum induced current.
d) Draw phase diagrams showing relationship between the maximum voltage and current vectors for a resistor, inductor and capacitor.
e) A resistance of 7Ω is connected in series with a pure inductance of 31.4 mH and the circuit is connected to a $100 \mathrm{v}, 50 \mathrm{~Hz}$ sinusoidal (ax) supply. Calculate the:-
(i) Circuit current.
(ii) Phase angle.

Question 2

a) State the superposition theorem.
b) With reference to the circuit diagram shown below, use the superposition theorem to determine the value of the currents I_{1} and I_{2} respectively.
(11 mks)

Question 3

a) State Faraday's law of induction.
b) Explain how a d.c generator operates.
c) A coil is wrapped with 200 turns of wire on the perimeter of a square frame of sides 18 cm . Each turn has the same area, equal to that of the frame, and the total resistance of the coil is 2Ω. A uniform magnetic field is turned on perpendicular to the plane of the coil. If the field changes linearly from 0 to $0.5 \mathrm{~Wb} / \mathrm{m}^{2}$ in a time of 0.8 seconds, calculate the magnitude of:-
(i) Induced e.m.f in the coil while the field is changing.
(4 mks)
(ii) Induced current in the coil while the field is changing.
(3 mks)

Question 4

An alternating voltage supply contains in its circuit the following elements, inductor, $\mathrm{L}=230 \mathrm{mH}$, capacitor, $\mathrm{C}=15 \mathrm{mF}$ and resistor, $\mathrm{R}=160 \Omega$. All are connected in series.
a) Using mathematical expressions differentiate between the terms reactance and impedance as used in a.c supply.
b) Given that the elements given above operate on a 60 Hz and 360 v a.c supply, calculate
(i) Impedance, z.
(ii) Amplitude current, I_{m}.
(iii) Phase angle θ.

