KENYA METHODIST UNIVERSITY END OF TRIMESTER EXAMINATION, APRIL 2009

TIME	:	2 HOURS
COURSE TITLE	:	DATA STRUCTURES AND ALGORITHMS
COURSE CODE	:	CISY 212
DEPARTMENT	:	COMPUTER INFORMATION SYSTEMS
FACULTY	:	ARTS AND SCIENCES

INSTRUCTIONS: Answer Question One and ANY OTHER TWO questions

Question One (30 marks):

- a) Define the following terms;
 - i. Data abstraction
 - ii. Abstract data type (ADT)
 - iii. Binary tree
 - iv. Algorithm
- b) Distinguish between a linear list and a linked list give and state the advantage of linked list over linear list [4marks]

c) Explain how circular implementation of queue using an array eliminates rightward drift. Write an algorithm on how to detect whether the circular queue if full or empty

[8 marks]

[4 marks]

Question Two (20 marks):				
g)	Define time complexity. Why is it important in analysis of algorithms	[3 marks]		
f)	Define data encapsulation and give any two advantages	[3 marks]		
e)	A queue is referred to as FIFO explain	[3 marks]		
d)	Outline any five atomic data types that are used in programming	[5 marks]		

a) Define a linear list ADT [2 marks]

b) Write a C program that achieves the following in an array list ADT implementation [5 marks]

- i) Add a new item X at position i
- ii) Deletes item at position *i*

c)	i) discuss the heap	operations	[4 marks]
	ii) Represent the array	below in a binary tre	e. Perform a heap sort on it
			[5 marks]
	[0] 70		
	[1] 60		
	[2] 12		
	[3] 40		
	[4] 30		
	[5] 8		
	[6] 10		

d) Write an algorithm to perform of binary search

[4 marks]

[5 marks]

Question Three (20 marks):

a)	i) Define a stack ADT	[2 marks]
	ii) Define the sequential search	[2 marks]

b) Show how the following items; 40 50 30 can be implemented in stack ADT as an array [1 marks]

- c) Write a C program to PUSH two elements 70 and 80 then POP one element from the stack above [5 marks]
- d) Give all order of traversal for following binary tree

e)	Write a program that captures 5 elements from an array and displays them, ar the smallest element in the array	nd also returns [5 marks]					
Qu	Question Four (20 marks):						
a)	Given the equation (A+B)*C convert it post-fix and pre-fix notation	[4 marks]					
b)	Discuss any three linked list implementations	[6 marks]					
c)	Define a binary search tree and outline four of its properties	[6 marks]					
d)	The cost of sequential search is On and that of the binary search is $Olog_2n$ Which faster between the two. Justify your answer	[4 marks]					