KENYA METHODIST UNIVERSITY
END OF TRIMESTER EXAMINATION, APRIL 2009

FACULTY : ARTS AND SCIENCES

DEPARTMENT : COMPUTER INFORMATION SYSTEMS
COURSE CODE : CISY 212
COURSE TITLE : DATA STRUCTURES AND ALGORITHMS
TIME : 2 HOURS
INSTRUCTIONS: Answer Question One and ANY OTHER TWO questions

Question One ($\mathbf{3 0}$ marks):

a) Define the following terms;
i. Data abstraction
ii. Abstract data type (ADT)
iii. Binary tree
iv. Algorithm
[4 marks]
b) Distinguish between a linear list and a linked list give and state the advantage of linked list over linear list
[4marks]
c) Explain how circular implementation of queue using an array eliminates rightward drift.

Write an algorithm on how to detect whether the circular queue if full or empty
[8 marks]
d) Outline any five atomic data types that are used in programming
[5 marks]
e) A queue is referred to as FIFO explain
[3 marks]
f) Define data encapsulation and give any two advantages
[3 marks]
g) Define time complexity. Why is it important in analysis of algorithms
[3 marks]
Question Two (20 marks):
a) Define a linear list ADT
b) Write a C program that achieves the following in an array list ADT implementation
i) Add a new item X at position i
ii) Deletes item at position i
c) i) discuss the heap operations
ii) Represent the array below in a binary tree. Perform a heap sort on it

$[0]$	70
$[1]$	60
$[2]$	12
$[3]$	40
4$]$	30
$[5]$	8
$[6]$	10

d) Write an algorithm to perform of binary search

Question Three (20 marks):

a) i) Define a stack ADT
ii) Define the sequential search
[2 marks]
[2 marks]
b) Show how the following items; 405030 can be implemented in stack ADT as an array
c) Write a C program to PUSH two elements 70 and 80 then POP one element from the stack above
d) Give all order of traversal for following binary tree

e) Write a program that captures 5 elements from an array and displays them, and also returns the smallest element in the array

Question Four (20 marks):

a) Given the equation $(\mathrm{A}+\mathrm{B}) * \mathrm{C}$ convert it post-fix and pre-fix notation [4 marks]
b) Discuss any three linked list implementations [6 marks]
c) Define a binary search tree and outline four of its properties [6 marks]
d) The cost of sequential search is $\mathbf{O n}$ and that of the binary search is $\mathbf{O l o g}_{2} \mathrm{n}$ Which faster between the two. Justify your answer

