KENYA METHODIST UNIVERSITY
FIRST TRIMESTER EXAMINATION
APRIL 2009

FACULTY : ARTS \& SCIENCES
DEPARTMENT : COMPUTER INFORMATION SYSTEMS
COURSE CODE : CISY 422
COURSE TITLE : ARTIFICIAL INTELLIGENCE
TIME : 2HRS

Instructions: Attempt Question 1 and any other two questions.

Question 1 (30 Marks)

a) List and briefly explain the four approaches used in defining Artificial Intelligence.
b) Define the following terms
i. Knowledge based Systems
ii. State space search
iii. Rational Agent
c) A search tree is shown below where each circle represents a node corresponding to a state in search space. The estimated cost (h function) for finding a solution is shown in the circle. The two nodes with $\mathrm{h}=0$ are goal states and the other terminal nodes are dead-ends. Actual link costs are marked on the links between the nodes. Thus the path cost (g function) of a node is equal to the sum of the link costs from the root to that node.

1
d) Using the following search algorithms, give the sequence of nodes expanded before a goal is reached:
i. Depth first
ii. Breadth first
e) Distinguish between propositional and predicate logic as knowledge representation formalisms. State one advantage and one limitation of each of these representation formalism.
f) List and briefly describe the 5 properties of agent environments.

Question 2 (15 Marks)

a) Use a truth a table to evaluate the following sentence. Is it valid?

$$
(R \wedge Q) \rightarrow(P \vee Q) \wedge(P \wedge R)
$$

b) Draw the structure of an expert system and explain the function of each part

Question 3 (15 Marks)

(a) Consider the MIN-MAX game tree given below. (To answer this question you will have to draw two neat sketches of the tree on your answer sheet).
(i)Perform alpha-beta pruning and illustrate this on your sketch.
(ii) Calculate the difference in branching factor before and after pruning

b) Represent the following sentences in predicate logic:
i. Everybody loves somebody
ii. Nobody likes taxes
c) Explain the three difficulties encountered by hill-climbing algorithm.

Question 4 (15 Marks)

a) Consider the map below (not drawn to scale)

Using the A^{*} algorithm work out a route from A to R, using the following cost functions
$\mathrm{g}(\mathrm{n})=$ the distance between each town (shown on map)
$h(n)=$ the straight line distance between any town and town R.
These distances are given in the table below as Straight Line Distance to R

\mathbf{A}	240		\mathbf{G}	165		\mathbf{M}	100
\mathbf{B}	186		\mathbf{H}	139		\mathbf{N}	77
\mathbf{C}	182		\mathbf{I}	120		\mathbf{O}	72
\mathbf{D}	163		\mathbf{J}	130		\mathbf{P}	65
\mathbf{E}	170		\mathbf{K}	122		\mathbf{Q}	65
\mathbf{F}	150		\mathbf{L}	104		\mathbf{R}	0

In your answer provide the following
(i) The search tree that is produced, showing the cost function at each node
(ii) State the order in which the nodes were expanded and the route that is taken, and give the total cost
(b) Describe how one-point crossover in genetic algorithms works.
(c) Briefly describe any parent selection technique employed in genetic algorithms

