KENYA METHODIST UNIVERSITY

END OF TRIMESTER EXAM APRIL 2009
FACULTY : SCIENCES
DEPARTMENT : COMPUTER INFORMATION SYSTEMS
COURSE CODE : CISY 431
COURSE TITLE : INFORMATION SYSTEMS SECURITY
Total Marks (70)
TIME: 2 HOURS

INSTRUCTIONS

Answer all questions in SECTION A and ANY TWO questions in SECTION B The VIGENERE TABLE is attached for any relevant questions.

SECTION A - Answer ALL questions

Question 1-30 marks

i. Define the following terms
a. Nonrepudiation
b. Computationally secure
c. Group
ii. Construct a Playfair matrix with the key largest.
a. Using the Playfair matrix from a.) encrypt this message:

Must see you over Cadogan West.
iii. Using the extended Euclid's algorithm, find the multiplicative inverse of $1234 \bmod 4321$
iv. Perform encryption and decryption using the RSA algorithm, for the following:
a. $\mathrm{p}=3 ; \mathrm{q}=11, \mathrm{e}=7 ; \mathrm{M}=5$
b. $\mathrm{p}=17 ; \mathrm{q}=31, \mathrm{e}=7 ; \mathrm{M}=2$.
(6 marks)
v. What is the difference between a mono-alphabetic cipher and a poly-alphabetic cipher?
(2 marks)
vi. Distinguish between logical security and physical security. (2 marks)
vii. List three objectives of information security.
(3 marks)

SECTION B - Answer ANY TWO questions

Question 2-20 marks

i. Show that a Feistel decryption is the inverse of a Feistel encryption.
(10 marks)
ii. Encrypt the message "meet me", using the Hill cipher with the key 94 . Show your calculations and the result.
(10 marks)

Question 3-20 marks

i. In a public-key system using RSA, you intercept the ciphertext $\mathrm{C}=10$ sent to a user whose public key is $\mathrm{e}=5, \mathrm{n}=35$. What is the plaintext M ?
(6marks)
ii. In the RSA public-key encryption scheme, each user has a public key, e, and a private key, d. Suppose Bob leaks his private key. Rather than generating a new modulus, he decides to generate a new public and a new private key. Is this safe?
(8 marks)
iii. Convert the plaintext "THE BUTLER DID IT" to ciphertext, using $\mathrm{k}=13$ on Ceasar Cipher
(6 marks)

Question 4-20 marks

i. Using the Vigenère cipher, encrypt the word "explanation" using the key leg.
(4 marks)
ii. This problem provides a numerical example of encryption using a oneround version of DES. We start with the same bit pattern for the key K and the plaintext, namely:
in hexadecimal notation: 0123456789 ABCDEF
in binary notation: $\quad 00000001001000110100010101100111$

$$
10001001101010110100110111101111
$$

a. Derive K_{1}, the first-round subkey.
b. Derive $\mathrm{L}_{0}, \mathrm{R}_{0}$.

Use the following information:
a. A bit rotation of 1
b. Permutation choice 1 for key

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

c. Permutation choice 2 for key

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

d. Initial permutation for plaintext

(a) Initial Permutation (IP)							
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

	a	b	C	d	e	1	g	h						m	n	0							u	V	W			
a	A	B	C	D	E	F	F G	G H	H	J	J	K	L	M	N	0	$\bigcirc \mathrm{P}$	Q	R	R	S	T	U	V	W		Y	Z
b	B	C	D	E	F	G	G		J	K			M	N	0	P	P Q	Q	R S	S T		U	V	W	X		Z	A
C	C	D	E	F	G	H	H	J	J K	K L		N	N	0	P	Q	Q R	S	T	T U	U	V	W	X	Y	2	A	B
d	D	E	F	G	H	I	J	J K	K L	M	M	N	0	P	Q	Q	R S			U V		W	X	Y	Z	A	B	C
e	E	F	G	H	1	J	J K	K L	L M	N		0	P	Q	R	S	T					X	Y	Z	A			
f	F	G	H	1	J	K	K	L M	M N	N 0	0	P	Q	R	S	T	U	V	V W	W X		Y	Z	A	B			
g	G	H		J	K	L	L M	N	N 0	O P		Q	R	S	T	U	J V	W	W X			Z	A	B	C		E	
h	H	1	J	K	L	M	N	N 0	0	Q	Q	R	S	1	U	V	V W					A	B	C	D			G
		J	K	L	M	N	N 0	0 P	P Q	Q R	R	S	T	U	V		W X					B	C	D	E		G	
	J	K	L	M	N	0	0 P	P Q	Q R	R S	S	T	U	V	W	N X	X Y	Z	2 A	A		C	D	E	F	G	H	
k	K	L	M	N	0	P	P Q	Q R	R S	T		U	V	W	X		Y Z					D	E	F	G			
\|	L	M	N	0	P	Q	Q R	R S	S T	T U	J	V	W	X	Y	Z	2 A	A	C			E	F	G	H		J	K
m	M	N	0	P	Q	R	R S	T	T U	J V	V	W	X	Y	Z	A	A B					F	G	H			K	L
n	N	0	P	Q	R	S	S T	T U	J V	V W	N	X	Y	Z	A	B	B C	D	E	E		G	H	1	J	K	L	N
0	0	P	Q	R	S	T	T U	J V	V W	N X	X	Y	Z	A	B	C	C D			F G		H		J	K		M	N
p	P	Q	R	S	T	U	J V	V W	W X	X Y	Y	Z	A	B	C	D	D E	F	G	G H			J	K	L	M	N	0
q	Q	R	S	T	U	V	V W	N X	X Y	Y Z	2	A	B	C	D	E	F		G H	H I		J	K	L	M	N	0	
	R	S	T	U	V	W	W X	X Y	Y Z	2 A	A	B	C	D	E	F	G	G				K	L	M	N	0	P	Q
S	S	T	U	V	W	X	X Y	Y Z	2 A	A B		C	D	E	F	G	G H			J K		L	M	N	0	P	Q	R
t	T	U	V	W	X		Y Z	2 A	A B	C	C	D	E	F	G	H	1			K		M	N	0	P	Q	R	S
u	U	V	W	X	Y	Z	A	A B	B C	C D)	E	F	G	H	1	J	K	L	L		N	0	P	Q	R	S	
v	V	W	X	Y	Z	A	A	B	D	E	E	F	G	H	1		K	L		M		0	P	Q	R	S	T	U
w	W	X	Y	Z	A		3 C	C D	D E	F		G	H	1	J				N	N 0		P	Q	R	S	T	U	V
x	X		Z	A	B	C	C D	D	E	G	G	H		J	K	K		N	0	0		Q	R	S	T	U	V	W
y	Y	Z	A	B	C	D	D E		$F \mathrm{G}$	G H	1		J	K	L	M	M N	0	0 P	P Q	Q	R	S	T	U		W	X
		A	B	C	D	E	E					J		L		N	0		Q	Q		S	T	U			X	Y

