KENYA METHODIST UNIVERSITY FIRST TRIMESTER EXAMINATION APRIL 2009

FACULTY : ARTS \& SCIENCES
DEPARTMENT : COMPUTER INFORMATION SYSTEMS
COURSE CODE : MATH 100
COURSE TITLE BASIC MATHEMATICS
2HRS
TIME
MODE PART-TIME TOWN CAMPUS

Question 1(30 Marks)

a) Define the following terms:
i) Arithmetic progression
ii) Geometric progression (2 mks)
b) Solve for x in the given equation $2^{x-3}=8^{x}$
c) Compute the interest paid on a loan of Ksh 1400 at a 9% interest rate for 18 months.
d) Find the inverse of the matrix

$$
\left(\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right)
$$

e) Find the solution to the system using elimination method.

$$
\begin{aligned}
& 3 x+2 y=4 \\
& 5 x-y=8
\end{aligned}
$$

f) Find a real number x which satisfies each of the following
i) $81 x=3 \sqrt{3}$
ii) $(1 / 32)^{x}=4$
(2 mks)
g) Without using tables, find each of the following
i) $\log _{2} 64$
(2 mks)
ii) $\log _{2} 4 \sqrt[3]{4}$
(2 mks)
h) Given that

$$
\begin{aligned}
& E=\{1,2,3, \ldots . ., 100\} \\
& A=\{5,6,7, \ldots . ., 21\} \\
& B=\{14,15,16, \ldots .35\}
\end{aligned}
$$

Taking E as the universal set, find the following:
ii) $A \cup B$
iii) $A^{\prime} \cap B$
i) A rectangle with a perimeter of 100 m is to have an area of at least $500 \mathrm{~m}^{2}$. Within what bounds must the length of the rectangle lie?

Question 2

a) Solve the following equations
i) $\frac{3 y+2}{2 y+1}-\frac{6 y-9}{4 y+3}=0$
(3 mks)
ii) $\frac{x+1}{3}-\frac{x-2}{7}=5$
(3 mks)
b) Solve the inequalities
i) $\frac{3 x-4}{2 x+1}<-2$
(3 mks)
ii) $2 x^{2}+7 x \leq 4$
(3 mks)
c) Given that $f(x)=\frac{x^{2}-1}{x^{2}+1}, g(x)=\frac{1}{x}$

Find:
i) $f \circ g(x)$
(2 mks)
ii) $\operatorname{gof}(x)$ (2 mks)
b) If Ksh 800 is invested at 12% for 2 years, find the amount at the end of two years if the interest is compounded
i. Annually
ii. Semi annually
iii. Quarterly

Question 3

a) A quadratic equation in x is of the form
$a x^{2}+b x+c=0$
Why should $a \neq 0$
(2 mks)
b) Solve by
i) Factoring, $x^{2}-10 x+9=0$
ii) Completing the square, $3 x^{2}-4 x-5=0$
iii) Quadratic formula, $25 x^{2}+x+1=0$
c) Use elementary row operations to solve the following system
$2 x+3 y+z=-1$
$3 x+3 y+z=1$
(8 mks)
$2 x+4 y+z=-2$
d) Find the inverses of the matrices below
i) $\left(\begin{array}{cc}1 & 4 \\ -1 & -3\end{array}\right)$
ii) $\left(\begin{array}{cc}3 / 5 & 1 / 5 \\ -2 / 5 & 1 / 5\end{array}\right)$

$$
(4 \mathrm{mks})
$$

Question 4

a) A salesperson's commission rate is 25%. He received a commission of Ksh 425 on the sale of a motorbike. How much did the motorbike cost?
b) A rug is marked at a price of Ksh 240 and is on sale at 25% off. What is the discount and sale price?
c) i) Find the sum of the first 17 terms of the A.P $2^{1 / 2}, 3^{1 / 4}, 4, \ldots \ldots$.
ii) The first term of an AP is 5, the last is 19 and the sum is 84 . Find the number of terms and the common difference.
d) The $6^{\text {th }}$ term of a GP is 27 and the common ratio $=3$. Find the first term and the sum of the first 8 terms.
(4 mks)
e) Find the domain and range of each of the following functions:
i) $y=\frac{\sqrt{3 x+2}}{x^{2}+x-6}$
ii) $f(x)=\sqrt{x^{2}-x-2}$
(4 mks)

Question 5

a) If Kshs. 800 is invested at 13% for 4 years. Find the amount at the end of four years, if the interest is compounded quarterly.
b) The width of a rectangular swimming pool is one-third its length. If its perimeter is 96 metres, find the dimensions of the pool.
c) If Ksh 1700 is invested at 7.8% compounded quarterly, find the amount compounded at the end of 10 years.
d) A factory manufactures three types of balls at a monthly cost of $\$ 2,425$ for 1,125 balls. The manufacturing costs for the three types of balls are $\$ 4, \$ 3$ and $\$ 2$ respectively. These balls sell for $\$ 16$, $\$ 12$ and $\$ 10$ respectively. How many of each type are manufactured if the monthly profit is $\$ 9,275$. $($ Profit $=$ Income - cost $)$.
(10 mks)

