<u>KENYA METHODIST UNIVERSITY</u> FIRST TRIMESTER EXAMINATION APRIL 2009

FACULTY	:	ARTS & SCIENCES
DEPARTMENT	:	COMPUTER INFORMATION SYSTEMS
COURSE CODE	:	MATH 100
COURSE TITLE	:	BASIC MATHEMATICS
TIME	:	2HRS
MODE	:	PART-TIME TOWN CAMPUS

Instructions: Attempt Question 1 and any other two questions.

Question 1(30 Marks)

a)	Define the following terms:				
	i) Arithmetic progression				
	ii) Geometric progression	(2 mks)			
b)	Solve for x in the given equation $2^{x-3} = 8^x$	(3 mks)			
c)	c) Compute the interest paid on a loan of Ksh 1400 at a 9% interest rate for 18 months. (2 M				
d)) Find the inverse of the matrix				
	$\left(\begin{array}{cc}2&1\\5&3\end{array}\right)$	(3 mks)			
e)	Find the solution to the system using elimination method.				
	3x + 2y = 4 5x - y = 8	(3 mks)			
f)	Find a real number x which satisfies each of the following				
	i) $81x = 3\sqrt{3}$	(2 mks)			
	ii) $(\frac{1}{32})^x = 4$	(2 mks)			
g)	Without using tables, find each of the following				
	i) log ₂ 64	(2 mks)			
	ii) $\log_2 4\sqrt[3]{4}$	(2 mks)			

h) Given that

 $E = \{1, 2, 3, \dots, 100\}$ $A = \{5, 6, 7, \dots, 21\}$ $B = \{14, 15, 16, \dots, 35\}$

Taking E as the universal set, find the following:

	i) $A \cap B$	(2 mks)
	ii) $A \cup B$	(2 mks)
	iii) $A' \cap B$	
		(2 mks)
i)	A rectangle with a perimeter of 100m is to have an area of at least 500m ² .	Within what bounds must

the length of the rectangle lie? (3 mks)

Question 2

a) Solve the following equations

i)
$$\frac{3y+2}{2y+1} - \frac{6y-9}{4y+3} = 0$$
 (3 mks)

ii)
$$\frac{x+1}{3} - \frac{x-2}{7} = 5$$
 (3 mks)

b) Solve the inequalities

i)
$$\frac{3x-4}{2x+1} < -2$$
 (3 mks)

ii)
$$2x^2 + 7x \le 4$$
 (3 mks)

c) Given that
$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$
, $g(x) = \frac{1}{x}$

Find:

i) fog (x) (2 mks)
ii)
$$cof(x)$$

- b) If Ksh 800 is invested at 12% for 2 years, find the amount at the end of two years if the interest is compounded
 - i. Annually
 - ii. Semi annually
 - iii. Quarterly (4 Mks)

Question 3

a) A quadratic equation in x is of the form

 $ax^2 + bx + c = 0$ Why should $a \neq 0$ (2 mks)

- b) Solve by
 - i) Factoring, $x^2 10x + 9 = 0$

- ii) Completing the square, $3x^2 4x 5 = 0$ iii) Quadratic formula, $25x^2 + x + 1 = 0$ (6 mks)
- c) Use elementary row operations to solve the following system

$$2x + 3y + z = -1$$

$$3x + 3y + z = 1$$

$$2x + 4y + z = -2$$

(8 mks)

d) Find the inverses of the matrices below

i)
$$\begin{pmatrix} 1 & 4 \\ -1 & -3 \end{pmatrix}$$

ii) $\begin{pmatrix} 3/5 & 1/5 \\ -2/5 & 1/5 \end{pmatrix}$ (4 mks)

Question 4

- a) A salesperson's commission rate is 25%. He received a commission of Ksh 425 on the sale of a motorbike. How much did the motorbike cost? (3 Mks)
- b) A rug is marked at a price of Ksh 240 and is on sale at 25% off. What is the discount and sale price?

(3 Mks)

c)	i)	Find the sum of the first 17 terms of the A.P $2\frac{1}{2}$, $3\frac{1}{4}$, 4,	(3 mks)
	ii)	The first term of an AP is 5, the last is 19 and the sum is 84. Find the number of terms are	id the
		common difference.	(3 mks)

- d) The 6^{th} term of a GP is 27 and the common ratio = 3. Find the first term and the sum of the first 8 terms. (4 mks)
- e) Find the domain and range of each of the following functions:

$$i) \quad y = \frac{\sqrt{3x+2}}{x^2 + x - 6}$$

ii)
$$f(x) = \sqrt{x^2 - x - 2}$$
 (4 mks)

Question 5

a) If Kshs.800 is invested at 13% for 4 years. Find the amount at the end of four years, if the interest is compounded quarterly.
 (3 mks)

- b) The width of a rectangular swimming pool is one-third its length. If its perimeter is 96 metres, find the dimensions of the pool. (4 mks)
- c) If Ksh 1700 is invested at 7.8% compounded quarterly, find the amount compounded at the end of 10 years.
 (3 Mks)
- d) A factory manufactures three types of balls at a monthly cost of \$2,425 for 1,125 balls. The manufacturing costs for the three types of balls are \$4, \$3 and \$2 respectively. These balls sell for \$16, \$12 and \$10 respectively. How many of each type are manufactured if the monthly profit is \$9,275. (Profit = Income cost). (10 mks)