KENYA METHODIST UNIVERSITY END OF FIRST TRIMESTER EXAMINATIONS 2009

FACULTY	:	ARTS AND SCIENCES
DEPARTMENT	:	COMPUTER INFORMATION SYSTEMS
COURSE CODE	:	MATH 103
COURSE TITLE	:	CALCULUS I
TIME	:	3 HOURS

Instructions:

• Answer question **ONE** and any other **TWO** questions.

Question 1 (30 marks)

a) Evaluate the following limits.

(i)
$$_{x} \underline{\lim}_{2} \frac{x^{2} - 5x + 6}{x^{2} - 3x - 10}$$

(ii) $_{x} \underline{\lim}_{0} \frac{\sin 2x}{3x}$ (5 marks)

- b) Differentiate $\frac{x}{x^2 2}$ from the first principles. (5 marks)
- c) Find an approximate value for the square root of 63.5 (5 marks)
- d) If $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$, show that $\frac{dy}{dx} = \frac{2}{1+x^2}$ (6 marks)
- e) A wire of length 42cm is bent into a rectangle of length *x* cm. Express the area, *A* as a function of *x*. Hence calculate the length of the rectangle for which the area is a maximum and determine this maximum area.(5 marks)

f) Differentiate
$$y = \log_e(\sin 2x - x^3)$$
 (5 marks)

Question 2 (20 marks)

A function f(x) is defined as follows.

	(-2x+1)	if			x	<	-1
$f(x) = \begin{cases} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	x+4	if	-1	\leq	x	<	1
	5	if	1	<	x	<	2
	3	if			x	≥	2

a) Sketch the function on the Cartesian plane

b) State any points of discontinuity of f(x) (1 mark)

(5 marks)

c) Evaluate the following limits: (i) $_{x} \underbrace{\lim}_{-1} f(x)$ (ii) $_{x} \underbrace{\lim}_{1^{-}} f(x)$, (iii) $_{x} \underbrace{\lim}_{2} f(x)$ (3 marks)

d) A curve is defined parametrically by $x = \frac{2t}{t+2}$ and $y = \frac{3t}{t+3}$. Find the equation of the tangent through the point (1.2, 1.5) (7 marks)

e) Find
$$\lim_{x \to 4} \frac{\sqrt{5x-4}-2^2}{x-4}$$
 (4 marks)

Question 3 (20 marks)

- a) A conical flask of base radius 10 cm and slant angle 75⁰ is collecting water at a uniform rate of 100 cubic cm per second. At what rate will the radius of the water surface be changing when the radius of the water surface is 5 cm? (9 marks)
- b) Given the curve $y = 3x^4 4x^3$, find i. The x-intercepts (1 mark) ii. The stationary points and state their nature (5 marks) iii. Sketch the curve (1 mark)

c) Find the points on the graph $f(x) = \frac{x+1}{x^2+8}$ at which the tangent line is horizontal. (4 marks)

Question 4 (20 marks)

a) State the three conditions that a continuous function f(x), must satisfy at a point x = a. (3 marks)

b) Given the function
$$f(x) = \frac{3x^2 - 13x - 10}{2x^2 - 11x + 5}$$

- i. Show that $\lim_{x \to 1} f(x)$ is indeterminate.
- ii. By redefining f(x), show that the point of discontinuity is removable. (7 marks)

c) A particle starts from a point A and moves through a distance *s* metres in *t* seconds governed by the equation $s = 5t^2 - 18t + 16$.

- i. Determine the times when the particle is at A.
- ii. Show that its acceleration is a constant and state its value.
- iii. Calculate the velocity
 - Initially
 - After 3 seconds (6 marks)

d) Evaluate
$$\lim_{x \to \infty} \frac{5.5^x - 3^x \cdot 3^2}{2(5^x) + 3^x}$$
 and $\lim_{x \to \infty} \frac{5.5^x - 3^x \cdot 3^2}{2(5^x) + 3^x}$ (4 marks)