KENYA METHODIST UNIVERSITY
END OF FIRST TRIMESTER EXAMINATIONS 2009

FACULTY : ARTS AND SCIENCES
 DEPARTMENT : COMPUTER INFORMATION SYSTEMS
 COURSE CODE : MATH 103
 COURSE TITLE : CALCULUS I
 TIME : 3 HOURS

Instructions:

- Answer question ONE and any other TWO questions.

Question 1 (30 marks)

a) Evaluate the following limits.
(i) $\lim _{x \longrightarrow 2} \frac{x^{2}-5 x+6}{x^{2}-3 x-10}$
(ii) $\lim _{x \longrightarrow 0} \frac{\sin 2 x}{3 x}$
(5 marks)
b) Differentiate $\frac{x}{x^{2}-2}$ from the first principles.
c) Find an approximate value for the square root of 63.5
(5 marks)
d) If $y=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$, show that $\frac{d y}{d x}=\frac{2}{1+x^{2}}$ (6 marks)
e) A wire of length 42 cm is bent into a rectangle of length $x \mathrm{~cm}$. Express the area, A as a function of x. Hence calculate the length of the rectangle for which the area is a maximum and determine this maximum area.
f) Differentiate $y=\log _{e}\left(\sin 2 x-x^{3}\right)$

Question 2 (20 marks)

A function $f(x)$ is defined as follows.

$$
f(x)=\left\{\begin{array}{cl}
-2 x+1 & \text { if } \\
x+4 & \text { if }-1 \leq x<-1 \\
5 & \text { if } 1<x<2 \\
3 & \text { if }
\end{array}\right.
$$

a) Sketch the function on the Cartesian plane
b) State any points of discontinuity of $f(x)$
c) Evaluate the following limits:
(i) ${ }_{x} \underline{\lim }_{-1} f(x)$
(ii) $\lim _{1-} f(x)$,
(iii) $\lim _{2} f(x)$
(3 marks)
d) A curve is defined parametrically by $x=\frac{2 t}{t+2}$ and $y=\frac{3 t}{t+3}$.

Find the equation of the tangent through the point $(1.2,1.5)$
e) Find $\lim _{4} \frac{\sqrt{5 x-4}-2^{2}}{x-4}$

Question $3 \quad$ (20 marks)

a) A conical flask of base radius 10 cm and slant angle 75° is collecting water at a uniform rate of 100 cubic cm per second. At what rate will the radius of the water surface be changing when the radius of the water surface is 5 cm ?
b) Given the curve $y=3 x^{4}-4 x^{3}$, find

i.	The x -intercepts	(1 mark)
ii.	The stationary points and state their nature	(5 marks)
iii.	Sketch the curve	$(1 \mathrm{mark})$

c) Find the points on the graph $f(x)=\frac{x+1}{x^{2}+8}$ at which the tangent line is horizontal.

Question $4 \quad$ (20 marks)

a) State the three conditions that a continuous function $f(x)$, must satisfy at a point

$$
x=a .
$$

b) Given the function $f(x)=\frac{3 x^{2}-13 x-10}{2 x^{2}-11 x+5}$
i. Show that ${ }_{x} \lim _{5} f(x)$ is indeterminate.
ii. By redefining $f(x)$, show that the point of discontinuity is removable. (7 marks)
c) A particle starts from a point A and moves through a distance s metres in t seconds governed by the equation $s=5 t^{2}-18 t+16$.
i. Determine the times when the particle is at A .
ii. Show that its acceleration is a constant and state its value.
iii. Calculate the velocity

- Initially
- After 3 seconds (6 marks)
d) Evaluate $\lim _{x \rightarrow+\infty} \frac{5.5^{x}-3^{x} \cdot 3^{2}}{2\left(5^{x}\right)+3^{x}}$ and $\lim _{x} \frac{5.5^{x}-3^{x} \cdot 3^{2}}{2\left(5^{x}\right)+3^{x}}$

