KENYA METHODIST UNIVERSITY FIRST TRIMESTER EXAMINATION APRIL 2009

FACULTY: ARTS & SCIENCES

DEPARTMENT: COMPUTER INFORMATION SYSTEMS

COURSE CODE : MATH 104 COURSE TITLE : CALCULUS II

TIME : 2HRS

KSPS

Instructions: Attempt Question 1 and any other two questions.

Question 1 (30 Mks)

a) Evaluate
$$\int x^2 \cos x dx$$
 (5 Mks)

b) Evaluate
$$\int \frac{dx}{1 + \cos x}$$
 (4 Mks)

c) Find the area enclosed by the curve
$$y = x^2 - 5x + 4$$
 and the x-axis. (5 Mks)

- d) Find the volume obtained by rotating the area under the curve y = 1 + x between x = 1 and x = 2 about the x axis. (5 Mks)
- e) Let a, b and m be positive numbers, with a < b. Using Limits find the area under the graph y = mx, $a \le x \le b$ (5 Mks)
- f) i) The acceleration due to gravity on the moon is $1.6m / s^2$. If a rock is dropped into a crevasse, how fast will it be going just before it hits the bottom 30 seconds later? (3 Mks)

ii) Evaluate the integral
$$\int \sin(7x + 5) dx$$
 (3 Mks)

Question 2 (20 Mks)

a) Find the area between the curve
$$y = x^2 - 1$$
 and $\frac{dy}{dx}y = 2x - 1$ (10 Mks)

c) Evaluate
$$\int \frac{1}{x^2 - 6x + 13} dx$$
 (3 Mks)

Question 3 (20 Mks)

- a) Find the surface area generated by the loop of the curve $x = t^2$, $y = t \frac{t^3}{3}$ about the axis. (10 Mks)
- b) Find the position s(t) of a particle moving on a line if:

$$\frac{ds}{dt} = v = 5\cos \pi t m / s \text{ and } s(0) = 2.$$

Also find the total distance traveled by the particle from t = 0 to $t = \frac{3}{2}$ seconds, and the particles displacements for this time periods. (10 Mks)

Question 4 (20 Mks)

a) Show that if f is continuous on [a, b], and F is any antiderivative of f on [a,b] then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$
(10 Mks)

b) Calculate
$$\frac{dy}{dx}$$
 if $y = \int_{0}^{x^2} \cos t dt$ (5 Mks)

c) Evaluate the integral
$$\int \frac{\cos 2x}{\sin^3 2x}$$
 (5 Mks)