KENYA METHODIST UNIVERSITY
 FIRST TRIMESTER EXAMINATION
 APRIL 2009

FACULTY
DEPARTMENT
COURSE CODE
COURSE TITLE
TIME
KSPS

: ARTS \& SCIENCES
DEPARTMENT : COMPUTER INFORMATION SYSTEMS
COURSE CODE : MATH 104
COURSE TITLE : CALCULUS II
TIME : 2HRS
KSPS
Instructions: Attempt Question 1 and any other two questions.

Question 1 ($\mathbf{3 0} \mathbf{~ M k s)}$

a) Evaluate $\int x^{2} \cos x d x$
(5 Mks)
b) Evaluate $\int \frac{d x}{1+\cos x}$
(4 Mks)
c) Find the area enclosed by the curve $y=x^{2}-5 x+4$ and the x -axis.
(5 Mks)
d) Find the volume obtained by rotating the area under the curve $y=1+x$ between $\mathrm{x}=1$ and $\mathrm{x}=2$ about the $\mathrm{x}-$ axis.
(5 Mks)
e) Let a, b and m be positive numbers, with $\mathrm{a}<\mathrm{b}$. Using Limits find the area under the graph $\mathrm{y}=\mathrm{mx}$, $a \leq x \leq b$
f) i) The acceleration due to gravity on the moon is $1.6 \mathrm{~m} / \mathrm{s}^{2}$. If a rock is dropped into a crevasse, how fast will it be going just before it hits the bottom 30 seconds later?
(3 Mks)
ii) Evaluate the integral $\int \sin (7 x+5) d x$
(3 Mks)

Question 2 (20 Mks)

a) Find the area between the curve $y=x^{2}-1$ and $\frac{d y}{d x} y=2 x-1$
(10 Mks)
b) Find the Volume of a sphere whose center is the origin, radius r.
(7 Mks)
c) Evaluate $\int \frac{1}{x^{2}-6 x+13} d x$
(3 Mks)

Question 3 (20 Mks)

a) Find the surface area generated by the loop of the curve $x=t^{2}, y=t-\frac{t^{3}}{3}$ about the axis.
(10 Mks)
b) Find the position $\mathrm{s}(\mathrm{t})$ of a particle moving on a line if:
$\frac{d s}{d t}=v=5 \cos \pi t m / s$ and $\mathrm{s}(0)=2$.

Also find the total distance traveled by the particle from $\mathrm{t}=0$ to $t=\frac{3}{2}$ seconds, and the particles displacements for this time periods.
(10 Mks)

Question 4 (20 Mks)

a) Show that if f is continuous on $[a, b]$, and F is any antiderivative of f on $[a, b]$ then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

(10 Mks)
b) Calculate $\frac{d y}{d x}$ if $y=\int_{0}^{x^{2}} \cos t d t$
(5 Mks)
c) Evaluate the integral $\int \frac{\cos 2 x}{\sin ^{3} 2 x}$

