

KENYA METHODIST UNIVERSITY

END OF 1st TRIMESTER 2009 EXAMINATIONS

FACULTY	:	ARTS AND SCIENCES
DEPARTMENT	:	COMPUTER INFORMATION SYSTEMS
UNIT CODE	:	MATH 110
UNIT TITLE	:	LINEAR ALGEBRA I
TIME	:	2 HOURS

Instructions:

• Answer question ONE and any other TWO questions.

Question 1 (30 marks)

- a) Determine the values of a so that the following system in unknowns x, y and Z has:
 - i) No solution
 - ii) More than one solution
 - iii) A unique solution

$$x + y - z = 1$$

 $2x + 3y - az = 3$
 $X + ay - 3z = 2$ (7 mks)

b) Find the inverse of the matrix using row reduction method.

	-1	2	-3]
A =	2	1	0
	4	-2	5

- c) Determine whether or not the following system of vectors is linearly dependent. (3,1,2), (2,0,6), (4,1,4) (5 mks)
- d) Suppose U and W are subspaces of a vector space V. Show that U + W is a subspace of V.
 (5 mks)
- e) Let W be the subspace of R^4 generated by the vectors {(1, -2, 5, -3), (2, 3, 1, -4), (3, 8, -3, -5)}. Find a basis and the dimension of W. (7 mks)

Question 2 (20 marks)

a) Let $T: R^3 \rightarrow R^3$ be the linear transformation defined by

$$T(x, y, z) = (z + 2y - z, y + z, x + y - 2z)$$

Find a basis and the dimensions of:

b) Use Cramer's rule to solve the system of equations:

$$2x_1 + 4x_2 + 6x_3 = 18$$

$$4x_1 + 5x_2 + 6x_3 = 24$$

$$3x_1 + x_2 - 2x_3 = 4$$
 (9 mks)

c) Calculate the distance of the plane 2x - 5y + 3z + 8 = 0 from origin. (3 mks)

Question 3 (20 marks)

a) Find the rank and basis of the matrix:

$$B = \begin{bmatrix} 1 & 3 & 1 & -2 - -3 \\ 1 & 4 & 3 & -1 & -4 \\ 2 & 3 & -4 & -7 & -3 \\ 3 & 8 & 1 & -7 & -8 \end{bmatrix}$$
(7 mks)

b) Let $F: R^2 \rightarrow R^2$ be the linear transformation for which F(3,1) = (2-4) and F(1,1) = (0,2)

i) Find the formula for F

c) Find the value of K for the vector (1, -2, k) to be a linear combination of vectors (3, 0, -2) and (2, -1, -5). (6 mks)

Question 4 (20 marks)

a) Show that the matrix is idempotent. $E = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (5 mks) b) Determine whether S = (2 + 1 + 1) (1 + 2 + 3) (1 + 2 + 3) (2 + 1 + 1) is a basis of P4

b) Determine whether $S = \{(2, 1, -1, 0), (1, 2, 1, 3), (-1, -2, 1, -2), (2, 1, 1, -1)\}$ is a basis of R⁴. (7 mks)

c) Find the inverse of the matrix by first finding the adjoint.

$B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$

Hence solve: $x_1 + x_3 = 2$ $x_1 - 2x = -1$ $2x_2 + x_3 = 1$

(8 mks)