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• Answer question ONE and any other TWO questions. 
 

Question 1 (30 marks)Question 1 (30 marks)Question 1 (30 marks)Question 1 (30 marks)    

a) Determine the values of a so that the following system in unknowns x, y and Z has: 

 i) No solution 

 ii) More than one solution 

 iii) A unique solution 

 

  x + y – z = 1 

  2x + 3y – az = 3    

  X + ay – 3z = 2        (7 mks) 

 

b) Find the inverse of the matrix using row reduction method. 
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A          (6 mks) 

 

c) Determine whether or not the following system of vectors is linearly dependent. 

 (3,1,2), (2,0,6), (4,1,4)        (5 mks) 

 

d) Suppose U and W are subspaces of a vector space V.  Show that U + W is a subspace of 

V.           (5 mks) 

 

e) Let W be the subspace of R4 generated by the vectors {(1, -2, 5, -3), (2, 3, 1, -4), (3, 8, -

3, -5)}.  Find a basis and the dimension of W.     (7 mks) 

 

 

Question 2 (20 marks)Question 2 (20 marks)Question 2 (20 marks)Question 2 (20 marks)    

a) Let T:R3 →R3 be the linear transformation defined by  

 

T(x, y, z) = (z + 2y – z, y + z, x + y – 2z) 
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 Find a basis and the dimensions of: 

 i) Kernel of T 

 ii) Image of T         (8 mks) 

 

b) Use Cramer’s rule to solve the system of equations: 

 

 2x1 + 4x2 + 6x3 = 18 

 4x1 + 5x2 + 6x3 = 24 

 3x1 + x2 – 2x3 = 4         (9 mks) 

 

c) Calculate the distance of the plane 2x – 5y + 3z + 8 = 0 from origin. (3 mks) 

 

    

Question 3 (20 marks)Question 3 (20 marks)Question 3 (20 marks)Question 3 (20 marks)    

a) Find the rank and basis of the matrix: 
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B         (7 mks) 

 

b) Let F:R2 →R2 be the linear transformation for which F(3,1) = (2-4) and F(1,1) = (0,2) 

 

 i) Find the formula for F 

 

 ii) Find F(7,4)         (7 mks) 

 

c) Find the value of K for the vector (1, -2, k) to be a linear combination of vectors 

 (3, 0, -2) and (2, -1, -5).        (6 mks) 

 

 
Question 4 (20 marks)Question 4 (20 marks)Question 4 (20 marks)Question 4 (20 marks)    

a) Show that the matrix is idempotent. 
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E     (5 mks) 

b) Determine whether S = {(2, 1, -1, 0), (1, 2, 1, 3), (-1, -2, 1, -2), (2, 1, 1, -1)} is a basis of R4. 

            (7 mks) 

 

c) Find the inverse of the matrix by first finding the adjoint. 
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 Hence solve: 

 x1 +  x3 = 2 

 x1 – 2x      = -1 

        2x2 + x3 = 1         (8 mks) 
 


