KENYA METHODIST UNIVERSITY
 FIRST TRIMESTER EXAMINATION
 APRIL 2009

FACULTY	$:$	ARTS \& SCIENCES
DEPARTMENT	$:$	COMPUTER INFORMATION SYSTEMS
COURSE CODE	$:$	MATH 310
COURSE TITLE	$:$	REAL ANALYSIS I
TIME	$:$	2HRS
MODE	$:$	SCHOOL BASED

Instructions: Attempt Question 1 and any other two questions.

SECTION A

QUESTION 1 (30 Mks)

a) Determine whether each of the following series converges. In each case, justify your answer
i. $\quad \sum \frac{n}{n^{3}+n+1}$
ii. $\quad \sum \frac{(-1)^{n}}{n^{3}+n+1}$
iii. $\quad \sum \frac{n!(2 n)!}{(3 n)!}$
iv. $\quad \sum \frac{(-1)^{n+1}}{\sqrt{n}+\log (\sqrt{n}+1)}$
b) What does it mean to say that a series is "conditionally convergent"?

Suppose that the series $\sum a_{n}$
c) is conditionally convergent, and that $\quad b_{n} \quad c_{n} \quad$ sequences and are defined as follows:
$\mathrm{b}_{\mathrm{n}}=\max \left(\mathrm{a}_{\mathrm{n}}, 0\right)=\frac{1}{2}\left(a_{n}+\left|a_{n}\right|\right)$,
$\mathrm{c}_{\mathrm{n}}=\min \left(\mathrm{a}_{\mathrm{n}}, 0\right)=\frac{1}{2}\left(a_{n}-\left|a_{n}\right|\right)$

Prove that $\sum_{n} b_{n} \sum c_{n}$ both diverge. (you may use, without proof, the fact that if $\sum x_{n}$ and $\sum y_{n}$ converge, then for any $\alpha, \beta \in \Re, \sum\left(\alpha x_{n}+\beta y_{n}\right)$ converges.
c) State the Mean Value Theorem.
d) i) What is meant by an open subset of \Re^{n} ?
ii) What is meant by a closed subset of the same?

Question 2 (20 Marks)

a) Show that the following series converges for any $\mathrm{a}>1$:

$$
\begin{equation*}
\sum \frac{n}{\left(n^{2}+1\right)\left(\log \left(n^{2}+1\right)\right)^{a}} \tag{7}
\end{equation*}
$$

b) Determine the values of the real number x for which the following series converges:
$\sum \frac{n x^{n}}{n^{2}+2}$
c) Suppose that $a_{n} \geq 0$ and that the series $\sum a_{n}$ diverges. Prove that the series
$\sum \frac{a_{n}}{1+a_{n}}$ also diverges.

Question 3 (20 marks)

a) The function $\mathrm{f}: \mathrm{R}^{2} \backslash\left\{(0,0)^{\mathrm{T}} \rightarrow \Re\right.$ is given, for $\mathrm{x}=(\mathrm{x}, \mathrm{y})^{\mathrm{T}}$, by $f(x)=\frac{x^{2}}{x^{6}+y^{2}}$

Prove that the $\lim _{x \rightarrow 0} f(x)$ does not exist. (Here, $0=(0,0)$ T
b) Prove that if a function $f: \Re \rightarrow \Re$ has a local minimum at a point at which it is differentiable, then the derivative at that point is 0 .

Question 4 (20 Marks)

a)Suppose that $f: \Re \rightarrow \Re$ is differentiable and that $\left|f^{\prime}(x)\right|<1$ for all x . Prove that there can be utmost one solution of the equation $\mathrm{f}(\mathrm{x})=\mathrm{x}$.
b)Suppose that C is a subset of R^{n}. State the formal definition of what it means for C to be compact. Using this formal definition, prove that the union of two compact subsets of R^{n} is itself a compact subset.

