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SECTION A 

 
QUESTION 1 (30 Mks) 
 

a) Determine whether each of the following series converges. In each case, justify your answer 
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b) What does it mean to say that a series is “conditionally convergent”? 
 

c) 
Suppose that the series  

  is conditionally convergent, and that sequences and are defined as follows: 
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Prove that 
∑ nb

and 
∑ nc

both diverge. (you may use, without proof, the fact that if 

∑ nx
and 

∑ ny
converge, then for any 
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converges.  [10] 

 
c) State the Mean Value Theorem.        [3] 
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d)  i)What is meant by an open subset of ?nℜ
         ii)What is meant by a closed subset of the same?       [5] 

 
 
 
 
Question 2 (20 Marks) 
 

a) Show that the following series converges for any a>1: 
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b) Determine the values of the real number x for which the following series converges: 
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c) Suppose that 
0≥na
and that the series 

∑ na
diverges. Prove that the series  
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1   also diverges.         [7] 

 

Question 3 (20 marks) 

 

a) The function f:R2 \{(0,0)T ℜ→ is given, for x = (x,y)T ,by  
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Prove that the )(lim 0 xfx → does not exist. (Here, 0 = (0,0)T      [10]                  
      

 

 
b) Prove that if a function  ℜ→ℜ:f has a local minimum at a point at which it is differentiable, then 

the derivative at that point is 0.        [10] 
 
Question 4 (20 Marks) 
 
 
a)Suppose that ℜ→ℜ:f is differentiable and that 1)( <′ xf for all x. Prove that there can be utmost one 

solution of the equation f(x) = x.         [10] 
 
 

b)Suppose that C is a subset  of Rn. State the formal definition of what it means for C to be compact. 

Using this formal definition, prove that the union of two compact subsets of Rn is itself a compact 

subset.            [10] 

 
 
 
 

 
 


