KENYA METHODIST UNIVERSITY FIRST TRIMESTER EXAMINATION APRIL 2009

FACULTY	:	ARTS & SCIENCES
DEPARTMENT	:	COMPUTER INFORMATION SYSTEMS
COURSE CODE	:	MATH 310
COURSE TITLE	:	REAL ANALYSIS I
TIME	:	2HRS
MODE	:	SCHOOL BASED

Instructions: Attempt Question 1 and any other two questions.

SECTION A

QUESTION 1 (30 Mks)

a) Determine whether each of the following series converges. In each case, justify your answer

i.
$$\sum \frac{n}{n^3 + n + 1}$$
 [3]

ii.
$$\sum \frac{(-1)^n}{n^3 + n + 1}$$
 [3]

iii.
$$\sum \frac{n!(2n)!}{(3n)!}$$
[3]

iv.
$$\sum \frac{(-1)^{n+1}}{\sqrt{n} + \log(\sqrt{n} + 1)}$$
 [3]

b) What does it mean to say that a series is "conditionally convergent"?

Suppose that the series $\sum a_n$ c) is conditionally convergent, and that b_n c sequences and are defined as follows:

$$b_{n} = \max (a_{n}, 0) = \frac{1}{2} (a_{n} + |a_{n}|)$$
$$c_{n} = \min (a_{n}, 0) = \frac{1}{2} (a_{n} - |a_{n}|)$$

Prove that $\sum_{n=1}^{\infty} b_n \sum_{n=1}^{\infty} c_n$ both diverge. (you may use, without proof, the fact that if $\sum_{n=1}^{\infty} x_n \sum_{n=1}^{\infty} y_n$ converge, then for any $\alpha, \beta \in \Re, \sum_{n=1}^{\infty} (\alpha x_n + \beta y_n)$ converges. [10]

c) State the Mean Value Theorem.

[3]

d) i)What is meant by an open subset of \Re^n ?

ii)What is meant by a closed subset of the same?

Question 2 (20 Marks)

a) Show that the following series converges for any a>1:

$$\sum \frac{n}{(n^2 + 1)(\log(n^2 + 1))^a}$$
[7]

b) Determine the values of the real number x for which the following series converges:

$$\sum \frac{nx^n}{n^2 + 2} \tag{6}$$

c) Suppose that $a_n \ge 0$ and that the series $\sum a_n$ diverges. Prove that the series

$$\sum \frac{a_n}{1+a_n} \text{ also diverges.}$$
[7]

Question 3 (20 marks)

a) The function
$$f:\mathbb{R}^2 \setminus \{(0,0)^T \to \Re \text{ is given, for } x = (x,y)^T, by \quad f(x) = \frac{x^2}{x^6 + y^2}$$

Prove that the $\lim_{x \to 0} f(x)$ does not exist. (Here, $0 = (0,0)T$ [10]

b) Prove that if a function $f: \mathfrak{R} \to \mathfrak{R}$ has a local minimum at a point at which it is differentiable, then the derivative at that point is 0. [10]

Question 4 (20 Marks)

a)Suppose that $f : \Re \to \Re$ is differentiable and that |f'(x)| < 1 for all x. Prove that there can be utmost one solution of the equation f(x) = x. [10]

b)Suppose that C is a subset of Rⁿ. State the formal definition of what it means for C to be compact.Using this formal definition, prove that the union of two compact subsets of Rⁿ is itself a compact subset.[10]