

END OF 1st TRIMESTER 2009 EXAMINATIONS

FACULTY	:	ARTS AND SCIENCES
DEPARTMENT	:	COMPUTER INFORMATION SYSTEMS
UNIT CODE	:	MATH 331
UNIT TITLE	:	OPERATIONS RESEARCH I
TIME	:	2 HOURS

Instructions:

• Answer question ONE (compulsory) and any other TWO questions.

Question 1

- a) Define the following terms:
 - i) Feasible solution
 - ii) Slack variable
 - iii) Surplus variable (3 mks)
- b) State three main properties of a general linear programming problem. (3 mks)
- c) A firm produces two products A and B using two machines 1 and 2. One unit of product A requires 2 hours on machine 1 and 2 hours on machine 2. One unit of product B requires 3 hours on machine 1 and 1 hour on machine 2. Machine 1 is available for 12 hours per day while machine 2 is available for 8 hours per day. If the profits are Ksh.600 per unit of product A and Ksh.800 per unit of product B.
 - i) Form a linear optimization model.

- (5 mks)
- ii) Use graphical model to solve the linear programming model in (i) above.

(5 mks)

d) Obtain the dual of the following primal linear programme.

Minimize $x_0 = 30x_1 + 40x_2 + 12x_3 + 8x_4 - 3x_5$ Subject to: $3x_1 + x_2 + x_3 - x_5 \ge 20$ $x_1 + 3x_2 + x_3 + x_4 \ge 10$ $x_i \ge 0, l = 1, 2, 3, 4, 5$ (5 mks)

Question 2 (20 marks)

A company has 1000 tonnes of ore x, 2000 tonnes of ore y and 500 tonnes of z. products A, B and C are to be produced from these ores. For one tone of each of these produces the ore requirements are listed below:

	X	Y	Z	Profit (Ksh) per
				tone
A	5	10	10	100
В	5	8	5	200
C	10	5	0	50
Max available resources	1000	2000	500	

- i) Applying the simplex algorithm, calculate how many tones of each of the products A, B and C should the company produce so as to maximize its profits.
- ii) Evaluate this profit.

Question 3 (20 mks)

a) Consider the linear programming functions given below: maximize $z = 2x1 + x2 \le 10$

> subject to: $x_1 + 5x_2 \le 10$ $x_1 + 3x_2 \le 6$ $2x_1 + 2x_2 \le 8$ $x_1, x_2 = \ge 0$

Find:

- i) The solutions that maximize z using simplex method.
- ii) The equivalent dual function
- b) Apply the M-technique to find the solution to the following linear program.

Minimize $z = 4x_1 + x_2$ Subject to: $3x_1 + x_2 = 3$ $4x_1 + 3x_2 \ge 6$ $x_1 + 2x_2 \le 4$ $x_1 \ge 0, x_2 \ge 0$

Question 4 (20 marks)

- a) State and explain briefly three main basic elements of a mathematical model in operations research. (3 mks)
- b) Apply the cutting plane method to solve the following intergar linear programme.

Maximize z = 7x1 + 10x2

Subject to
$$-x_1 + 3x_2 \le 6$$

 $7x_1 + x_2 \le 35$
 $x_1, x2 \ge 0$ and integer (17 mks)