KENYA METHODIST UNIVERSITY

END OF $1^{\text {ST }}$ TRIMESTER 2010 EXAMINATIONS

FACULTY	$:$	COMPUTING AND INFORMATICS
DEPARTMENT	$:$	COMPUTER INFORMATION SYSTEMS
UNIT CODE	$:$	BBIT 211
UNIT TITLE	$:$	LINEAR ALGEBRA 1
TIME	$:$	2 HOURS

Instructions:

- Answer question 1 and any other 2 questions.

Question 1

a) Explain the following terms:
i) Basis
ii) Row equivalent
iii) Row echelon form (6 mks)
b) Use the reduction method to find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & 2 & -4 \\ -1 & -1 & 5 \\ 2 & 7 & 3\end{array}\right]$

Hence or otherwise, solve the system of equations.
$x+2 y-4 z=-2$
$x-y+5 z=5$
$2 x+7 y+3 z=3 \quad$ (9 mks)
c) Let $T: R^{3} \rightarrow R^{3}$ be the mapping defined by
$T(x, y, z)=(x+2 y+5 z, 3 x+5 y+13 z,-2 x-y-4 z)$ find;
i) Standard matrix representing t
ii) \quad A basis for the kernel of T
iii) A basis for the image of T (10 mks)
d) Determine whether or not, the vectors ($1,1,1$), ($1,2,3$) and ($2,-1,1$) span vector ($1,-2,5$) (5 mks)

Question 2

a) Use Cramer's rule to solve the system of equations.
$2 x+y-3 z=1$
$5 x+2 y-6 z=5$
$3 x-y-4 z=7$
(14 mks)
b) State in terms of the rank of a matrix, the conditions under which a system of linear equations $A \underline{x}=\underline{b}$ will have;
i) No solution
ii) Unique solution
iii) Infinitely many solutions (6 mks)

Question 3

a) Determine the value of c for which the set of vectors $\{(2,3,4),(3,-2,-1),(1, c, 3)\}$ is linearly independent. (7 mks)
b) Verify whether matrix; $B=\left(\begin{array}{ccc}1 & 1 & 3 \\ 5 & 5 & 6 \\ -2 & -1 & -3\end{array}\right)$ is nilpotent of order $3 . \quad$ (6 mks)
c) Explain the following terms;
i) Rank of a matrix
ii) Linear transformation
iii) Subspace
iv) Linearly independent (7 mks)

Question 4

a) Use the cofactor expansion to find the inverse of the matrix. $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 2 & 1\end{array}\right]$
b) Given $T: R^{2} \rightarrow R^{2}$ is defined by $T(x, y)=(2 x+y, x-y)$. Show that T is a linear transformation. (5 mks)

