

KENYA METHODIST UNIVERSITY

END OF 1ST TRIMESTER 2010 EXAMINATIONS

:	COMPUTING AND INFORMATICS
:	COMPUTER INFORMATION SYSTEMS
:	CISY 403
:	SIMULATION AND MODELING
:	2 HOURS
	: : : :

Instructions:

• Answer question 1 and any other 2 questions.

Question 1

- a) Outline the difference between;
 - i) Continuous simulation models and discrete simulation model. (4 mks)
 - ii) Deterministic model and probabilistic or stochastic model. (4 mks)
- b) A queuing system had the following data;

Inter-arrival time	Frequency	Service time	Frequency
(Min)		(Min)	
1	5	1	10
2	15	2	30
3	12	3	7
4	7	4	3
5	8		
6	3		
TOTAL	50		50

- i) If you work with an organization that is experiencing queuing problems, explain how one can come up with the above data. (2 mks)
- ii) Prepare the probability density function (p.d.f) for the inter-arrival time and the service time. (2 mks)
- iii) In each of the above cases, prepare the cumulative density function (CDF). (2 mks)
- c)

If the organization in (b) above starts work at 8.00 am every day, from Monday to Friday and work stops at 5p.m, simulate the first fifteen customers and determine the;

i)	Mean time a customer spends in the queue and system.	(4 mks)
ii)	Arrival rate λ and service rate μ .	(4 mks)
iii)	Traffic intensity p and service the system.	(4 mks)

- iv) Mean time the service point is idle.
- v) Mean number of customers in the queue.

(2 mks)

(2 mks)

Question 2

a)	Construct a congruential number generator with M>18.	(8 mks)
b)	Convert the generated numbers into the (0.1) interval.	(2 mks)
c)	Test the generated numbers for randomness at 5% significance level.	(10 mks)

Question 3

a)	In simulation the focus is on randomness. Explain.	(4 mks)
b)	Outline the procedure of any four random sampling methods.	(16 mks)

Question 4

a)	i)	Outline the key properties of a good random number generator.	(4mks)	
	ii)	Discuss the standard capabilities of a simulation language.	(6 mks)	
b)	Constr	ruct the 95% confidence interval for the mean of a random sample.		
	i)	One hundred members with \bar{x} =6.5Kg and standard deviation of 15kg.	(4 mks)	
	ii)	Nine members with \overline{x} =68kg with standard deviation of 15kg.	(4 mks)	
	iii)	If the two random samples (i) and (ii) are from the same population, analyze the		
		difference in their results.	(2 mks)	