

KENYA METHODIST UNIVERSITY

END OF $1^{\text {ST }}$ TRIMESTER 2010 EXAMINATIONS

NYERI CAMPUS

FACULTY	$:$	COMPUTING AND INFORMATICS
DEPARTMENT	$:$	COMPUTER INFORMATION SYSTEMS
UNIT CODE	$:$	MATH 331
UNIT TITLE	$:$	OPERATION RESEARCH 1
TIME	$:$	2 HOURS

Instructions:

- Answer question 1 and any other 2 questions.

Question 1

a) State the two duality theorems used in OR. (4 mks)
b) Given the LPP below, solve using the simplex method;

Maximize $\quad z=x_{1}+4 x_{2}+5 x_{3}$
Subject to $\quad 3 x_{1}+3 x_{2}+3 x_{3} \leq 22$
$x_{1}+2 x_{2}+3 x_{3} \leq 14$
$3 x_{1}+2 x_{2} \leq 14$
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0$
(11 mks)
c) Explain briefly five limitations of linear programming. (5 mks)
d) Solve the following LPP graphically;

Maximize $\quad z=20 x_{1}+10 x_{2}$
Subject to $\quad x_{1}+2 x_{2} \leq 40$
$3 x_{1}+x_{2} \geq 30$
$4 x_{1}+3 x_{2} \geq 60$
$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

Question 2

a) Explain briefly at least six characteristics of linear programming. (6 mks)
b) Use the Big-M method to solve the following LPP

Minimize

$$
\mathrm{z}=4 \mathrm{x}_{1}+\mathrm{x}_{2}
$$

Subject to

$$
3 x_{1}+x_{2}=3
$$

$$
4 x_{1}+3 x_{2} \geq 6
$$

$$
x_{1}+2 x_{2} \leq 4
$$

$$
\begin{equation*}
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 \tag{14mks}
\end{equation*}
$$

Question 3

a) Explain the following terms as used in linear programming;
i) Sensitivity Analysis
ii) Degenerate (6 mks)
b) Obtain the dual of the following and solve it.

$$
\begin{array}{ll}
\text { Minimize } & z=4 x_{1}+2 x_{2}+3 x_{3} \\
\text { Subject to } & 2 x_{1}++4 x_{3} \geq 5 \\
& 2 x_{2}+3 x_{2}+x_{3} \geq 4 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Hence or otherwise, find the solution of the primal. (14 mks)

Question 4

Find the optimum integer solutions of the following LPP using the cutting plane method
Maximize $\quad z=7 x_{1}+9 x_{2}$
Subject to $\quad-x_{1}+3 x_{2} \leq 6$

$$
7 x_{1}+x_{2} \leq 35
$$

$x_{1}, x_{2} \geq 0$ and integers (20 mks)

