

# **KENYA METHODIST UNIVERSITY**

# END OF 1<sup>ST</sup> TRIMESTER 2010 EXAMINATIONS

#### NYERI CAMPUS

| FACULTY    | : | COMPUTING AND INFORMATICS    |
|------------|---|------------------------------|
| DEPARTMENT | : | COMPUTER INFORMATION SYSTEMS |
| UNIT CODE  | : | MATH 331                     |
| UNIT TITLE | : | <b>OPERATION RESEARCH 1</b>  |
| TIME       | : | 2 HOURS                      |

#### Instructions:

• Answer question 1 and any other 2 questions.

#### **Question 1**

- a) State the two duality theorems used in OR. (4 mks)
- b) Given the LPP below, solve using the simplex method;

| Maximize   | $z = x_1 + 4x_2 + 5x_3$     |          |
|------------|-----------------------------|----------|
| Subject to | $3x_1 + 3x_2 + 3x_3 \le 22$ |          |
|            | $x_1 + 2x_2 + 3x_3 \le 14$  |          |
|            | $3x_1 + 2x_2 \le 14$        |          |
|            | $x_1, x_2, x_3 \ge 0$       | (11 mks) |

- c) Explain briefly five limitations of linear programming. (5 mks)
- d) Solve the following LPP graphically;

| Maximize   | $z = 20x_1 + 10x_2$  |          |
|------------|----------------------|----------|
| Subject to | $x_1 + 2x_2 \le 40$  |          |
|            | $3x_1 + x_2 \ge 30$  |          |
|            | $4x_1 + 3x_2 \ge 60$ |          |
|            | $x_1, x_2 \ge 0$     | (10 mks) |

#### **Question 2**

- a) Explain briefly at least six characteristics of linear programming. (6 mks)
- b) Use the Big-M method to solve the following LPP

| Minimize   | $z = 4x_1 + x_2$    |          |
|------------|---------------------|----------|
| Subject to | $3x_1 + x_2 = 3$    |          |
|            | $4x_1 + 3x_2 \ge 6$ |          |
|            | $x_1 + 2x_2 \le 4$  |          |
|            | $x_1, x_2 \ge 0$    | (14 mks) |

## Question 3

- a) Explain the following terms as used in linear programming;
  - i) Sensitivity Analysis
  - ii) Degenerate (6 mks)
- b) Obtain the dual of the following and solve it.

 $\begin{array}{ll} \mbox{Minimize} & z=4x_1+2x_2+3x_3\\ \mbox{Subject to} & 2x_1+ & +4x_3 \geq 5\\ & 2x_2+3x_2+x_3 \geq 4\\ & x_1, \, x_2, \, x_3 \geq 0\\ \mbox{Hence or otherwise, find the solution of the primal.} \end{tabular}$ 

## **Question 4**

Find the optimum integer solutions of the following LPP using the cutting plane method

 $\begin{array}{ll} \mbox{Maximize} & z=7x_1+9x_2\\ \mbox{Subject to} & -x_1+3x_2\leq 6 \end{array}$ 

 $7x_1 + x_2 \le 35$ x<sub>1</sub>, x<sub>2</sub>  $\ge 0$  and integers (20 mks)