KENYA METHODIST UNIVERSITY

END OF $2^{\text {ND }}$ TRIMESTER 2010 EXAMINATIONS

SCHOOL	$:$	SCIENCE \& TECHNOLOGY
DEPARTMENT	$:$	COMPUTER SCIENCE AND BUSINESS INFORMATION
UNIT CODE	$:$	CISY 212
UNIT TITLE	$:$	DATA STRUCTURES AND ALGORITHMS
TIME	$:$	2 HOURS

INSTRUCTIONS

**Answer question 1 and any other TWO from the four questions set
**Marks are awarded for clear and concise answers

Question 1[Compulsory]

(a) List two basic ways of representing linear structures in memory [2 marks]
(b) List THREE most common types of graph representation [3 marks]
(c) Differentiate between functional, and data abstraction [2 marks]
(d) Suppose that STACK is allocated $\mathrm{N}=6$ memory cells and initially STACK is empty, or in other words TOP: $=0$.Find the output of the following module. Show the logic
[4 marks]

1. Set AAA: $=2$ and BBB: $=5$
2. Call PUSH (STACK, AAA)
3. Call PUSH (STACK, BBB+2)
4. Call PUSH (STACK, 9)
5. Call PUSH (STACK, AAA+BBB)
6. REPEAT WHILE TOP<>O

Call pop (STACK, ITEM)
Display/Print (ITEM)
[End of Loop]
Return
(e) Given a $25 * 4$ matrix, DATA, such that Base $(D A T A)=200$ and that there are 4 words per memory cell.
(i) Explain how matrices of the same category as DATA are represented in the computer's memory
[2 marks]
(ii) Assuming a programming language that uses;
(a) row-major order
(b) Column-major order

Compute the address of DATA [12, 3]
[6 Marks]
(f) Information held about a student at the admissions office comprises the record.

STUDREGNO	REC NO	NAME	FACULTY	DEPARTMENT	SEX

Give a STUCTURE type Definition that could be used to declare a variable STUDINFO, of type
STUDREC, which holds the information of individual student
[3 marks]
(g) Give a recursive function that accepts the base,p,and power, q , entered from the keyboard as its input and computes and displays p raised to $\mathrm{q}\left(\mathrm{P}^{\mathrm{q}}\right)$
(h) What do you understand of the term hash function

Question 2

(a) Using the following weights, construct a Huffman tree $\{9,4,7,2,5,14\} \quad$ [8 marks]
(b) Perform an heap sort on the list 35, 15, 77,60,22,41

Question 3

(a)
(i) Define a stack ADT
(ii) Compare the sequential search with binary search
[2 marks]
[2 marks]
(b) Show how the following items; 405030 can be implemented in stack ADT as an array
[2 marks]
(c) Consider the algorithm below that finds mean of a set of n numbers stored in an array:

1. Initialize the index variable, i , to 0
2. Initialise the index variable, i, to 0
3. When $\mathrm{i}<\mathrm{n}$ do the following

4 (a) increment i by 1
(b) Add $\mathrm{x}[\mathrm{i}]$ to sum
5. Calculate and return mean as sum/n

Using the 'big oh' notation, show that $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n})$
[4 marks]
(d) Write pseudo code for a binary search tree. Assume the array is already sorted [5 marks]

Question 4

(a) Write a code (any language preferably c++) to implement the POP and PUSH functions of STACK ADT [6 Marks]
(b) Write down the adjacency matrix for the graph below
[6 marks]

(c) Define a binary tree and outline Two of its properties

