

KENYA METHODIST UNIVERSITY

END OF 2ND TRIMESTER 2010 EXAMINATIONS

SCHOOL	:	SCIENCE & TECHNOLOGY
DEPARTMENT	:	COMPUTER SCIENCE AND BUSINESS INFORMATION
UNIT CODE	:	CISY 212
UNIT TITLE	:	DATA STRUCTURES AND ALGORITHMS
TIME	:	2 HOURS

INSTRUCTIONS

**Answer question 1 and any other TWO from the four questions set **Marks are awarded for clear and concise answers

Question 1[Compulsory]

- (a) List two basic ways of representing linear structures in memory [2 marks]
- (b) List THREE most common types of graph representation [3 marks]
- (c) Differentiate between functional, and data abstraction [2 marks]
- (d) Suppose that STACK is allocated N=6 memory cells and initially STACK is empty, or in other words TOP: =0.Find the output of the following module. Show the logic

[4 marks]

- 1. Set AAA: =2 and BBB: =5
- 2. Call PUSH (STACK, AAA)
- 3. Call PUSH (STACK, BBB+2)
- 4. Call PUSH (STACK, 9)
- 5. Call PUSH (STACK, AAA+BBB)
- 6. REPEAT WHILE TOP<>O Call pop (STACK, ITEM) Display/Print (ITEM)

[End of Loop]

Return

- (e) Given a 25 * 4 matrix, DATA, such that Base (DATA) =200 and that there are 4 words per memory cell.
 - (i) Explain how matrices of the same category as DATA are represented in the computer's memory [2 marks]
 - (ii) Assuming a programming language that uses;
 - (a) row-major order
 - (b) Column-major order Compute the address of DATA [12, 3] [6 Marks]
- (f) Information held about a student at the admissions office comprises the record.

	e a STUCTURE type Definition that could be used to declare a variable STUDINFO, of type JDREC, which holds the information of individual student[3 marks] [3 marks] Give a recursive function that accepts the base, p, and power, q, entered from the keyboard as its input and computes and displays p raised to $q(P^q)$ [6 marks] [2 marks]What do you understand of the term hash function[2 marks]							
Questi (a)		ne follo	owing weights, construct a Huffman tree {9, 4, 7, 2, 5, 14}	[8 marks]				
(b)	Perform an heap sort on the list 35, 15, 77,60,22,41 [7 marks]							
Quest	ion 3							
(a)	((i)	Define a stack ADT	[2 marks]				
	((ii)	Compare the sequential search with binary search	[2 marks]				
(b)		Show h	now the following items; 40 50 30 can be implemented in sta	ick ADT as an				
	8	array		[2 marks]				
(c)	(Consider the algorithm below that finds mean of a set of n numbers stored in an						
	8	array:						
	1	1.	Initialize the index variable, i, to 0					
		2.	Initialise the index variable, i, to 0					
		3.	When i <n do="" following<="" td="" the=""><td></td></n>					
	4	4	(a) increment i by 1					
			(b) Add x[i] to sum					
	4	5.	Calculate and return mean as sum/n					
	τ	Using t	the 'big oh' notation, show that $T(n)=O(n)$	[4 marks]				

(d) Write pseudo code for a binary search tree. Assume the array is already sorted [5 marks]

Question 4

- (a) Write a code (any language preferably c++) to implement the POP and PUSH functions of STACK ADT [6 Marks]
- (b) Write down the adjacency matrix for the graph below [6 marks]

	(c)	Define a binary tree and outline Two of its properties	[3 marks]
--	-----	--	-----------