

END OF 2ND TRIMESTER 2010 EXAMINATIONS

FACULTY	:	SCIENCE AND TECHNOLOGY
DEPARTMENT	:	COMPUTER SCIENCE & BUSINESS INFORMATION
UNIT CODE	:	CISY 305
UNIT TITLE	:	AUTOMATA AND FORMAL LANGUAGES
TIME	:	2 HOURS

INSTRUCTIONS:

• Answer Question ONE (Compulsory) and ANY OTHER TWO questions:

Question One (30 Marks):

(a.)	Define:	
	i. Regular expression	
	ii. Decision problem	(2 marks)
(b.)	For a set A, define:	
	i. The powers A^n of A	
	ii. The asterate A* of A	(3 marks)
(c.)	Define the equivalence relation \approx and equivalence class for a state $p \in Q$ in a DFA	
		(3 marks)
(d.)	Give the set of strings matching each of the following patterns	
	і. ф	
	ii. E	(2 marks)
		× ,
(e.)	Describe the start configuration and next configuration for a Turing machine M	
		(4 marks)
(f.)	Give a deterministic finite state automaton that accepts the regular set	× ,
. ,	$\{x \in \{a, b\}^* \mid x \text{ contains an even number of } a's\}$	(4 marks)
		· · · ·
(g.)	Distinguish between a pushdown automata (PDA) and a finite state automata (FS	A)
		(2 marks)
(h.)	Consider two DFAs A and B that accept the sets L(A) and L(B) respectively. Des	cribe
	acceptance for a DFA C that accepts the set $L(A) \cap L(B)$	(3 marks)
(i.)	Construct a non-deterministic finite state automaton, that accepts the set	
	$\{x \in \{0,1\}^* \mid x \text{ ends with the string } 101\}$	(4 marks)
(j.)	What is the meaning of the configuration (q,w,X) for a PDA M?	(3 marks)

Question Two (20 Marks):

(a.) Briefly describe the halting problem

(b.)	D	efine:	
	i.	A monoid	(1 mark)
	ii.	Prefix for a string x	(2 marks)
	iii.	A pattern	(2 marks)
(c.)	G	ive an NFA, with four states, equivalent to the regular expression	
		(01+011+0111)*	(4 marks)

(d.) List the equivalence classes of the collapsing relation ≈ and construct a minimal DFA for the following DFA

Question Three (20 Marks):

- (a.) For a pushdown automata M, describe:
 - i. Configuration
 - ii. Acceptance
- (b.) Consider the DFA:

s p Describe the set accepted by the automata

(c.) Consider the following two deterministic finite state automata:

	A	<u>b</u>		а	b
→1	1	2	→1	2	3
→1 2F	2	1	2	3	1
			2 3F	1	2

use product construction to construct a DFA accepting the union of the two sets accepted by these automata (4 marks)

a

q

(d.) Convert the following grammar into Chomsky normal form $S \rightarrow aSbb | T$ $T \rightarrow bTaa | S | \in$ (5 marks)

) a

(e.) When is a turing machine said to be <u>total</u>? (2 marks)

a,b

(8 marks)

(2 marks)

(4 marks)

(3 marks)

(3 marks)

Question Four (20 Marks):

(a.)	Describe a deterministic one-tape turing machine and how it works.	(4 marks)
------	--	-----------

(b.) Construct a DFA that accepts the same set as the following NFA: (7 marks)

