

KENYA METHODIST UNIVERSITY

END OF 2ND TRIMESTER 2010 EXAMINATIONS

FACULTY	:	SCIENCE AND TECHNOLOGY
DEPARTMENT	:	COMPUTER SCIENCE & BUSINESS INFORMATION
UNIT CODE	:	CISY 431/BBIT 422
UNIT TITLE	:	INFORMATION SYSTEMS SECURITY
TIME	:	2 HOURS

Instructions: Answer Question one and any other two questions.

Question 1 (30 Mks) Compulsory

- a. Explain the following as used in ISS: -
 - Brute force i.
 - Malware ii.
 - iii. cryptanalysis,
 - Spoofing iv.
 - Message digest v.
- [5 MKS] b. If you had to both encrypt and compress data during transmission, which would you do first, and why? [3 MKS]
- c. Give and explain the conditions for Shannon's theory for perfect security.

[4 MKS] d. Confusion is a way of hiding the relationship between statistics of cipher text. Use an XOR example to show how this can be achieved. [3 MKS]

- e. Both IPSec and SSL are primarily encryption and authentication technologies for data in transit.
 - i. Give any three benefits of IPSec and

	ii. Any two drawbacks of SSL.	[5 MKS]
f.	Using Euclid's algorithm, find the gcd (160, 940).	[2 MKS]
g.	Briefly explain the Deffie-Hellman key exchange.	[4 MKS]
h.	How are password systems designed to increase protection	[4 MKS]

Question 2 (15 Marks)

- a. The following message was encrypted with the Hill cipher using this matrix: [7 MKS]
 - 52

24

Encrypt this message.

THE FAULT.

b.	Use a diagram to explain the working principle of Feistel cipher structure given a plai	n text block
	of length 2w bits is input.	[5 MKS]
c.	Public key algorithms have requirements, give and explain three.	[6 MKS]

c. Public key algorithms have requirements, give and explain three.

d. Using a table, show how a reversible block cipher transformation with n=2 will look like?

Question 3 (15 Marks)

a. Antiviruses have three approaches of dealing with viruses. Explain these approaches.

[3 MKS]
b. What do you think is the motivation of hackers?
c. What factors would be considered when implementing symmetric key encryption?
[4 MKS]

d. Any web security strategy must take care of four aspects: - Integrity, Confidentiality, DOS and Authentication. What do you understand by these terms?
e. DES has a strong avalanche effect. Explain what you understand by this statement.
[2 MKS]
f. Give and explain any two types of firewalls

Question 4 (15 Marks)

a.	What do you think are the qualities of a strong password?	[4 MKS]
b.	Cryptography requires generation of random numbers. Certain mathematical criter	ria must be met
	Define three criteria.	[3 MKS]
c.	Explain the working principle of the following:-	[6 MKS]
	i. Secure Electronic Transfer (SET)	
	ii. Certificate Authority (CA)	
d.	Using an example, explain how a virus infects a file.	[3 MKS]
e.	Why are security audits and penetration testing done?	
f.	Who would you recommend to do penetration testing? Why?	[4 MKS]

[2 MKS]

CISY 431 Information Systems Security

Course Purpose:

The course introduces the student to information security issues and basic applications to implement security.

Course Objectives:

At the end of this course, the student should have:

- Understood the threats to information systems and how they are prevented.
- Understood different security approaches and their limitations.
- Carried out a programming project.

Course Content:

Encryption Techniques. Block Cipher Principle and the Data Encryption Standard. Modular arithmetic, Euclid's Algorithm. Advanced Encryption Standard. Random Number Generation. Principles Public-Key Cryptosystems and RSA algorithm. Key Management – Diffie Hellman Key Exchange. Digital Signatures. Authentification Applications – Kerberos. Web Security. Intruders. Malicious Software. Firewalls- Prereq. CISY 231.