

END OF 2ND TRIMESTER 2010 EXAMINATIONS

NYERI CAMPUS

SCHOOL	:	SCIENCE & TECHNOLOGY
DEPARTMENT	:	COMPUTER SCIENCE AND BUSINESS
INFORMATION		
UNIT CODE	:	MATH 103
UNIT TITLE	:	CALCULUS I
TIME	:	2 HOURS

Instructions: Attempt Question 1 and any other two questions.

Question 1 – 30 marks

- a) Find the following limits
- i. $\lim_{x \to 3} \frac{x^2 8x + 15}{x^2 + 4x 21}$ (3Mks)

ii.
$$\lim_{x \to -3} \frac{x^3 + 27}{x^2 - 3x - 18}$$
 (3Mks)

iii.
$$\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 9x + 14}$$
 (3Mks)

iv.
$$\lim_{x \to -4} \frac{x^2 + 3x - 4}{x^3 + 64}$$
 (3 Mks)

b) Find the derivatives of the following

i.
$$g(x) = (3x^2 - 5)(4x + 1)$$
 (3 Mks)

ii.
$$f(x) = \frac{2x+5}{3x^2-4}$$
 (3 Mks)

c) Use the chain rule to solve the following $\frac{7}{7}$

$$A(x) = (x^{2} - 11x + 23)^{\overline{3}}$$
 (3Mks)

d) Prove that
$$\frac{d}{dx}(\sin x) = \cos x$$
 (5 Mks).

e) Study the continuity question of each of the following functions f near the given point *a*, and comment.

i.
$$f(x) = \begin{cases} x^2 + 9, & \text{if } x < -1, \\ 3x + 13, & \text{if } x \ge -1 \end{cases} a = -1$$
 (2 Mks)

ii.
$$f(x) = \frac{3x - 15}{x^2 - 25}; a = 5$$
 (2 Mks)

SECTION B – Answer ANY TWO questions

Question 2 – 20 marks

a) Solve the following using L'hopital's rule $\lim_{x \to \infty} \frac{3x^2 - x + 8}{2x^2 + 5x + 7}$	(3 Mks)	
b) Find the derivatives of the following $g(x) = (3x^2 - 5)(4x + 1)$ $w(x) = (x^2 + 4) \sin x + (3x - 5) \cos x$	(3 Mks) (3 Mks)	
c) A free fall of a heavy ball bearing is released from rest at time $t = 0$ sec.		
i. How many meters does the ball fall in the first 2 sec?ii. What is its velocity, speed, and acceleration then?	(2 Mks) (3 Mks)	
d) Prove that $\frac{d}{dx}(\sin x) = \cos x$	(6 Mks)	
Question 3 – 20 marks		
a) Find the slope of the circle $x^2 + y^2 = 25$ at the point (3, -4).		
b) Find the tangent and the normal to the curve $x^2 - xy + y^2 = 7$ at the point (-1,2).		
c) Suppose that y is a function of x that satisfies the equation $x^5 + y^5 = 32$ and suppose that y"		

exists. Find y'' .	(4 Mks)

(6 Mks)

(3 Mks)

d) State and prove the Mean Value Theorem

Question 4 – 20 marks

- a) Find the critical points of $f(x) = x^{\frac{1}{3}}(x-4) = x^{\frac{4}{3}} 4x\frac{1}{3}$ (3 Mks)
- b) Find the intervals on which $g(x) = -x^3 + 12x + 5, -3 \le x \le 3$ (5 Mks)

c) Find two positive numbers whose sum is 20 and whose product is as large as possible (5 Mks)

i. $y = x^5 + 37 x$ ii. y = sin3x

e) An open-top box is to be made by cutting small congruent squares from the corners of a 12-by-12-inch sheet of tin and bending up the sides. How large should the squares cut from the corners be to make the box hold as much as possible? (4 Mks)