KENYA METHODIST UNIVERSITY
END OF 2 ${ }^{\text {ND }}$ TRIMESTER 2010 EXAMINATIONS

NYERI CAMPUS

SCHOOL	$:$	SCIENCE \& TECHNOLOGY
DEPARTMENT	$:$	COMPUTER SCIENCE AND BUSINESS
INFORMATION		
UNIT CODE	$:$	MATH 103
UNIT TITLE	$:$	CALCULUS I
TIME	$:$	2 HOURS

Instructions: Attempt Question 1 and any other two questions.

Question 1-30 marks

a) Find the following limits
i. $\quad \lim _{x \rightarrow 3} \frac{x^{2}-8 x+15}{x^{2}+4 x-21}$
ii. $\quad \lim _{x \rightarrow-3} \frac{x^{3}+27}{x^{2}-3 x-18}$
(3Mks)
iii. $\quad \lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-9 x+14}$
(3Mks)
iv. $\quad \lim _{x \rightarrow-4} \frac{x^{2}+3 x-4}{x^{3}+64}$
b) Find the derivatives of the following
i. $\quad g(x)=\left(3 x^{2}-5\right)(4 x+1)$
(3 Mks)
ii. $\quad f(x)=\frac{2 x+5}{3 x^{2}-4}$
c) Use the chain rule to solve the following

$$
\begin{equation*}
A(x)=\left(x^{2}-11 x+23\right)^{\frac{7}{3}} \tag{3Mks}
\end{equation*}
$$

d) Prove that $\frac{d}{d x}(\sin x)=\cos x$
e) Study the continuity question of each of the following functions f near the given point a, and comment.
i. $f(x)=\left\{\begin{array}{l}x^{2}+9, i f x<-1, \\ 3 x+13, i f x \geq-1\end{array}\right\} \begin{aligned} & \mathrm{a}=-1 \\ & \text { (2 Mks) }\end{aligned}$
ii. $\quad f(x)=\frac{3 x-15}{x^{2}-25} ; a=5$

SECTION B - Answer ANY TWO questions

Question 2-20 marks

a) Solve the following using L'hopital's rule
(3 Mks)
$\lim _{x \rightarrow \infty} \frac{3 x^{2}-x+8}{2 x^{2}+5 x+7}$
b) Find the derivatives of the following

$$
\begin{aligned}
& g(x)=\left(3 x^{2}-5\right)(4 x+1) \\
& w(x)=\left(x^{2}+4\right) \sin x+(3 x-5) \cos x
\end{aligned}
$$

c) A free fall of a heavy ball bearing is released from rest at time $t=0$ sec.
i. How many meters does the ball fall in the first 2 sec?
(2 Mks)
ii. What is its velocity, speed, and acceleration then?
d) Prove that $\frac{d}{d x}(\sin x)=\cos x$

Question 3-20 marks

a) Find the slope of the circle $x^{2}+y^{2}=25$ at the point (3, -4$)$.
b) Find the tangent and the normal to the curve $x^{2}-x y+y^{2}=7$ at the point $(-1,2)$.
c) Suppose that y is a function of x that satisfies the equation $x^{5}+y^{5}=32$ and suppose that $y^{\prime \prime}$
exists. Find $y^{\prime \prime}$.
d) State and prove the Mean Value Theorem

Question 4-20 marks

a) Find the critical points of $f(x)=x^{\frac{1}{3}}(x-4)=x^{\frac{4}{3}}-4 x \frac{1}{3}$
(3 Mks)
b) Find the intervals on which $g(x)=-x^{3}+12 x+5,-3 \leq x \leq 3$
(5 Mks)
c) Find two positive numbers whose sum is 20 and whose product is as large as possible
d) Find $d y$ if

```
i. y= x 5 + 37x
ii. y=\operatorname{sin}3x
```

e) An open-top box is to be made by cutting small congruent squares from the corners of a 12 -by-12-inch sheet of tin and bending up the sides. How large should the squares cut from the corners be to make the box hold as much as possible?
(4 Mks)

