KENYA METHODIST UNIVERSITY

END OF $2^{\text {ND }}$ TRIMESTER 2010 EXAMINATIONS

SCHOOL : SCIENCE \& TECHNOLOGY
 DEPARTMENT :
 UNIT CODE : MATH 104
 UNIT TITLE : CALCULUS II
 TIME : 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- Answer QUESTION 1 and ANY OTHER TWO questions.

QUESTION ONE (30 MARKS)

a) Define the fundamental theorem of integral calculus.

Hence evaluate $\int_{1}^{2} x^{2} d x$
b) Use integral calculus to show that the volume V of a cone, base radius r and height, h is
$V=\frac{1}{3} \pi r^{2} h$
c) Evaluate $\int \frac{x^{3}+1}{x^{3}-x} d x$

6 marks)
d) Find the area between the curves $y=4 x$ and $y=2 x^{2}$
(4 marks)
e) Evaluate $\frac{d}{d x} \int_{x}^{x^{2}} \frac{\sin t}{t} d t$
f) Calculate the length round the circle, centre O , radius r
(7 marks)

QUESTION TWO (20 MARKS)

a) Consider the region in the $x y$ plane bounded by $y=4-x^{2}$ and the x-axis.
i. Make a sketch of this region
ii. Find the area of the region.
iii. Find the moment of inertia about the y-axis (Assume unit density)
b) Given the force $\vec{F}=x y \hat{i}-y^{2} \hat{j}$, show that $d w=x y d x-x^{2} d y$ and hence find the work done by \vec{F} along the straight path joining the origin $(0,0)$ to the point $(2,1)$

QUESTION THREE (20 MARKS)

a) Find the length of the arc of the parabola $y=x^{2}$ from $x=0$ to $x=1$
b) Find the area generated when the arc of the parabola $y=8 x$ between $x=0$ and $x=2$ is rotated about the x -axis.
c) Calculate the area between the curves $y=2 x-1$ and $y=x^{2}-1$

QUESTION FOUR (15 MARKS)

a) Prove the reduction formula

$$
I_{n}=\int \sin ^{n} x d x=\frac{n-1}{n} I_{n-2}-\frac{\cos x \sin ^{n-1} x}{n} .
$$

]

Hence evaluate $\int \sin ^{6} x d x$
b) Evaluate $\int \frac{d x}{1+\cos x}$
c) $\int_{0}^{\frac{\pi}{2}} \sin ^{5} x \cos ^{2} x d x$

QUESTION FIVE (15 MARKS)

a) Define an improper integral.
b) Evaluate $\int_{-1}^{0} \sqrt{\frac{1+x}{1-x}} d x$
c) Evaluate $\int_{0}^{2} \frac{d x}{\sqrt{16-x^{2}}}$
d) A particle moves such that at any given time t, its velocity is $v=6 t^{2}-26 t+22 \mathrm{~ms}^{-1}$. If after one second the particle is 3 metres from a given fixed point O , find the times the particle is at O.

