KENYA METHODIST UNIVERSITY
END OF $2^{\text {ND }}$ TRIMESTER 2010 EXAMINATIONS

FACULTY	$:$	SCIENCE AND TECHNOLOGY
DEPARTMENT	$:$	COMPUTER SCIENCE \& BUSINESS INFORMATION
UNIT CODE	$:$	MATH 110
UNIT TITLE	$:$	LINEAR ALGEBRA 1
TIME	$:$	2 HOURS

INSTRUCTIONS TO CANDIDATES:

- Answer QUESTION 1 and ANY OTHER TWO questions.

QUESTION ONE (30 MARKS)

a) Express (2.1.1) as a linear combination of $(1,0,2),(0,0,1),(-1,-1,1)$
(4 Marks)
b) Reduce to echelon form the augmented matrix for the system of equations below and hence deduce that the system has no solution

$$
\begin{align*}
2 x+y+3 z & =6 \\
x+y+4 z & =1 \tag{4Marks}\\
x & -z=1
\end{align*}
$$

c) Verify whether or not the following system of vectors is linearly dependent: $(3,1,2)$, (2,0,6) (4,1,4)
d) If $\vec{v}_{1}=(1,0,1,0) \quad \vec{v}_{2}=(0,2,0,1) \quad \vec{v}_{3}=(1,0,-1,0)$, show that \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} is an orthogonal set and find a vector \vec{v}_{4} in \Re^{4} such that $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ and \vec{v}_{4} is an orthogonal basis of \Re^{4}
e) Calculate the distance of the plane $2 x-5 y+3 z+8=0$ from the origin
(3 Marks)
f) If $E=\{(x, y): x+y+z=0)\}$, determine whether E is a subspace of \mathfrak{R}^{3}. (6 Marks)

QUESTION TWO (20 MARKS)

a) Determine whether or not the following form a basis for the vector space \mathfrak{R}^{3} :
i. $(1,1,1)$ and $(1,-1,5)$
(1 Mark)
ii. $(1,2,3),(1,0,-1)(3,-1,0)$ and $(2,1,-2)$
(1 Mark)
iii. $\quad(1,1,1),(1,2,3)$ and $(2,-1,1)$
(4 Marks)
iv. $(1,1,2),(1,2,5)$ and $(5,3,4)$
(4 Marks)
b) Given the following basis of Euclidean space $\mathfrak{R}^{3}\left\{\vec{v}_{1}=(1,1,1), \vec{v}_{2}=(0,1,1), \vec{v}_{3}=(0,0,1)\right\}$ use Gram -Schmidt orthogonalization process to transform $\left\{\vec{v}_{i}\right\}$ into an orthogonal basis $\left\{\vec{u}_{i}\right\}$
(10 Marks)

QUESTION THREE (20 MARKS)

a) Use Cramer's rule to solve the system of equations

$$
\begin{align*}
& 2 x_{1}+4 x_{2}+6 x_{3}=18 \\
& 4 x_{1}+5 x_{2}+6 x_{3}=24 \tag{7Marks}\\
& 3 x_{1}+x_{2}-2 x_{3}=4
\end{align*}
$$

b) Given the linear system

$$
\begin{aligned}
2 x_{1}+3 x_{2}-4 x_{3} & =5 \\
-4 x_{2}+2 x_{3} & =-8 \\
x_{1}-x_{2}+5 x_{3} & =9
\end{aligned}
$$

Obtain the inverse of the coefficients matrix and hence solve the system of equations.
(13 Marks)

QUESTION FOUR (20 MARKS)

Given the points $A=(1,1,1) \quad B=(2,0,2)$ and $C=(-1,1,2)$, find
a) the equation of the plane through A, B and C
(7 Marks)
b) the angle between AB and AC
(7 Marks)
c) the distance from $P(2,2,6)$ to the plane passing through A, B and C

QUESTION FIVE (20 MARKS)

a) State the conditions necessary for a linear function to have an inverse.
(2 Marks)

$$
\begin{aligned}
& \text { If } f(w)=(3 x,+2 y, x-3 z, y+4 z) \text {, find vectors } \vec{u}, \vec{v} \vec{w} \text { so that } f(\vec{u})=(1,0,0), \\
& f(\vec{v})=(0,1,0) \quad f(\vec{w})=(0,0,1) \text { and hence find a formula for } f^{-1}(x, y, z)
\end{aligned}
$$

b) Find the rank and basis of the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 3 & 1 & -2 & -3 \tag{5Marks}\\
1 & 4 & 3 & -1 & -4 \\
2 & 3 & -4 & -7 & -3 \\
3 & 8 & 1 & -7 & -8
\end{array}\right)
$$

