

KENYA METHODIST UNIVERSITY

END OF 2ND TRIMESTER 2010 EXAMINATIONS

FACULTY: SCIENCE AND TECHNOLOGY

DEPARTMENT: COMPUTER SCIENCE & BUSINESS INFORMATION

UNIT CODE : MATH 110

UNIT TITLE : LINEAR ALGEBRA 1

TIME : 2 HOURS

INSTRUCTIONS TO CANDIDATES:

• Answer **QUESTION 1** and **ANY OTHER TWO** questions.

QUESTION ONE (30 MARKS)

- a) Express (2.1.1) as a linear combination of (1,0,2), (0,0,1), (-1,-1,1) (4 Marks)
- b) Reduce to echelon form the augmented matrix for the system of equations below and hence deduce that the system has no solution

$$2x + y + 3z = 6$$

$$x + y + 4z = 1 (4 Marks)$$

$$x - z = 1$$

- c) Verify whether or not the following system of vectors is linearly dependent: (3,1,2), (2,0,6) (4,1,4) (5 Marks)
- d) If $\overrightarrow{v}_1 = (1,0,1,0)$ $\overrightarrow{v}_2 = (0,2,0,1)$ $\overrightarrow{v}_3 = (1,0,-1,0)$, show that \overrightarrow{v}_1 , \overrightarrow{v}_2 and \overrightarrow{v}_3 is an orthogonal set and find a vector \overrightarrow{v}_4 in \Re^4 such that \overrightarrow{v}_1 , \overrightarrow{v}_2 , \overrightarrow{v}_3 and \overrightarrow{v}_4 is an orthogonal basis of \Re^4 (8 Marks)
- e) Calculate the distance of the plane 2x 5y + 3z + 8 = 0 from the origin (3 Marks)
- f) If $E = \{(x, y): x + y + z = 0\}$, determine whether E is a subspace of \Re^3 . (6 Marks)

QUESTION TWO (20 MARKS)

a) Determine whether or not the following form a basis for the vector space \Re^3 :

i.
$$(1,1,1)$$
 and $(1,-1,5)$ (1 Mark)

ii.
$$(1,2,3),(1,0,-1)(3,-1,0)$$
 and $(2,1,-2)$ (1 Mark)

iii.
$$(1,1,1), (1,2,3)$$
 and $(2,-1,1)$ (4 Marks)

iv.
$$(1,1,2), (1,2,5)$$
 and $(5,3,4)$ (4 Marks)

b) Given the following basis of Euclidean space $\Re^3 \left\{ \overrightarrow{v}_1 = (1,1,1), \overrightarrow{v}_2 = (0,1,1), \overrightarrow{v}_3 = (0,0,1) \right\}$ use Gram –Schmidt orthogonalization process to transform $\left\{ \overrightarrow{v}_i \right\}$ into an orthogonal basis $\left\{ \overrightarrow{u}_i \right\}$ (10 Marks)

QUESTION THREE (20 MARKS)

a) Use Cramer's rule to solve the system of equations

$$2x_1 + 4x_2 + 6x_3 = 18$$

 $4x_1 + 5x_2 + 6x_3 = 24$
 $3x_1 + x_2 - 2x_3 = 4$ (7 Marks)

b) Given the linear system

$$2x_1 + 3x_2 - 4x_3 = 5$$

$$- 4x_2 + 2x_3 = -8$$

$$x_1 - x_2 + 5x_3 = 9$$

Obtain the inverse of the coefficients matrix and hence solve the system of equations.

(13 Marks)

QUESTION FOUR (20 MARKS)

Given the points A = (1,1,1) B = (2,0,2) and C = (-1,1,2), find

- a) the equation of the plane through A, B and C (7 Marks)
- b) the angle between AB and AC (7 Marks)
- c) the distance from P(2,2,6) to the plane passing through A, B and C (6 Marks)

QUESTION FIVE (20 MARKS)

- a) State the conditions necessary for a linear function to have an inverse. (2 Marks) If f(w) = (3x, +2y, x-3z, y+4z), find vectors \overrightarrow{u} , \overrightarrow{v} \overrightarrow{w} so that $f(\overrightarrow{u}) = (1,0,0)$, $f(\overrightarrow{v}) = (0,1,0)$ $f(\overrightarrow{w}) = (0,0,1)$ and hence find a formula for $f^{-1}(x, y, z)$ (13 Marks)
- b) Find the rank and basis of the matrix

$$A = \begin{pmatrix} 1 & 3 & 1 & -2 & -3 \\ 1 & 4 & 3 & -1 & -4 \\ 2 & 3 & -4 & -7 & -3 \\ 3 & 8 & 1 & -7 & -8 \end{pmatrix}$$
 (5 Marks)