KENYA METHODIST UNIVERSITY

END OF 2ND TRIMESTER 2010 EXAMINATIONS

FACULTY	$:$	SCIENCE AND TECHNOLOGY
DEPARTMENT	$:$	COMPUTER SCIENCE \& BUSINESS INFORMATION
UNIT CODE	$:$	PHYS 201
UNIT TITLE	$:$	ELECTRICAL CIRCUITS
TIME	$:$	2 HOURS

Instructions:

- Question 1 is compulsory AND any other 2 questions.

Question 1

a. Briefly discuss the following;
i. Kirchoffs law (4mks)
ii. Nortons theorem.
b. Define the following terms as used to AC circuits.
i. Amplitude
ii. Cycle
(4mks)
c. With the aid a well labeled diagram differentiate between first and second order circuits.
d. State three applications of a transformer.
e. Three phasors are given as $A=3+j 3, B=4$ and $C=5+j$. Present operations $A C$ in rectangular form;
(2mks)
Question 2
a. What's is a series A.C circuit
[2marks]
b. A coil has a resistance of $R=5 \Omega$ and an inductance of $\mathrm{L}=100 \mathrm{mH}$. At a particular instant in time after a battery is connected across the coil, the current is $\mathrm{i}=2 \mathrm{~A}$, and is increasing at a rate of $\mathrm{di} / \mathrm{dt}=20 \mathrm{As}^{-1}$. What is the voltage V of the battery? What is the time-constant of the circuit? What is the final value of the current?
c. With a relevant diagram, derive the differential equation of a series RL circuit
[6marks]

Question 3

a. Define the following forms in relation to DC circuits.
i. Node
ii. Branch
[1marks]
iii. Loop
[1marks]
[1marks]
b. A current of $i(t)=12 \sqrt{2 \cos }\left(1000 t+90^{\circ}\right)$ flows through a circuit composed of a resistor $\mathrm{R}=18 \Omega$ and a capacitor $\mathrm{C}=83.3 \times 10^{-6} \mathrm{~F}$ and a inductor $\mathrm{L}=30 \mathrm{Mh}$ connected in series. Find the resulting voltage across all three elements.
i. Express $i(t)$ in phasor; $i=12\left\llcorner 90^{\circ}\right.$
ii. Find the impedance for the ($\square=1000$)
c. An alternating current is given by $i=120 \sin 120 \pi t$ t.find,
i. Maximum value
ii. Time period
iii. Instantaneous value when $t=1 / 360$ seconds

Question 4

Find the currents and voltages across each resistor using the Superposition Theorem.

[20marks]

Question 5

a. What is phase sequence in three-phase system
[4marks]
b. Differentiate between a step-down and step up transformer. [4marks]
c. Draw a circuit showing the three windings of a three -phase alternator interconnected in a star connection.
[5marks]
d. In a RLC series circuit, show that $Z=\sqrt{ } R^{2}+X^{2}{ }_{C}+X^{2} L$
[7marks]

