

KENYA METHODIST UNIVERSITY

END OF 2ND TRIMESTER 2010 EXAMINATIONS

FACULTY	:	SCIENCE AND TECHNOLOGY
DEPARTMENT	:	COMPUTER SCIENCE & BUSINESS INFORMATION
UNIT CODE	:	PHYS 201
UNIT TITLE	:	ELECTRICAL CIRCUITS
TIME	:	2 HOURS

Instructions:

Question 1 is compulsory AND any other 2 questions. •

Question 1

a.	Briefly	y discuss the following;	
	i.	Kirchoffs law	(4mks)
	ii.	Nortons theorem.	(4mks)

- ii. Nortons theorem.
- b. Define the following terms as used to AC circuits.
 - Amplitude i.
 - Cycle ii.

(4mks)

- c. With the aid a well labeled diagram differentiate between first and second order circuits. (3mks) (3mks)
- d. State three applications of a transformer.
- e. Three phasors are given as A = 3 + i3, B = 4 and C = 5 + i. Present operations AC in rectangular form; (2mks)

Question 2

a. What's is a series A.C circuit

[2marks]

- b. A coil has a resistance of $R=5\Omega$ and an inductance of L=100mH. At a particular instant in time after a battery is connected across the coil, the current is i=2A, and is increasing at a rate of di/dt=20As⁻¹. What is the voltage V of the battery? What is the time-constant of the circuit? What is the final value of the current? [7marks]
- c. With a relevant diagram, derive the differential equation of a series RL circuit [6marks]

Question 3

a. Define the following forms in relation to DC circuits.

i.	Node	[1marks]
ii.	Branch	[1marks]
iii.	Loop	[1marks]

b. A current of i(t)=12 $\sqrt{2cos}$ (1000t +90⁰) flows through a circuit composed of a resistor R=18 Ω and a capacitor C=83.3X10⁻⁶F and a inductor L=30*M*h connected in series. Find the resulting voltage across all three elements.

i. Express i(t) in phasor; $i=12 \perp 90^{\circ}$ ii. Find the impedance for the (\Box =1000)	[4marks] [4marks]
c. An alternating current is given by $i=120sin120\pi t.find$,	
i. Maximum value	[1marks]
ii. Time period	[2marks]
iii. Instantaneous value when t=1/360 seconds	[2marks]

Question 4

Find the currents and voltages across each resistor using the Superposition Theorem.

[20marks]

Question 5

- a. What is phase sequence in three-phase system [4marks]
- b. Differentiate between a step-down and step up transformer. [4marks]
- c. Draw a circuit showing the three windings of a three –phase alternator interconnected in a star connection. [5marks]
- d. In a RLC series circuit, show that $Z = \sqrt{R^2 + X^2_C + X^2_L}$ [7marks]